Green Lead Nanoparticles Induced Apoptosis and Cytotoxicity in MDA-MB-231 Cells by Inducing Reactive Oxygen Species and Caspase 3/7 Enzymes

Nanoparticles are widely used in the pharmaceutical, agriculture, and food processing industries. In this study, we have synthesized green lead nanoparticles (gPbNPs) by using an extract of Ziziphus spina-christi leaves and determined their cytotoxic and apoptotic effect on the human breast cancer M...

Full description

Bibliographic Details
Main Authors: Wadyan Lafi Alsulami, Daoud Ali, Bader O. Almutairi, Khadijah N. Yaseen, Saad Alkahtani, Rafa A. Almeer, Saud Alarifi
Format: Article
Language:English
Published: SAGE Publishing 2023-11-01
Series:Dose-Response
Online Access:https://doi.org/10.1177/15593258231214364
Description
Summary:Nanoparticles are widely used in the pharmaceutical, agriculture, and food processing industries. In this study, we have synthesized green lead nanoparticles (gPbNPs) by using an extract of Ziziphus spina-christi leaves and determined their cytotoxic and apoptotic effect on the human breast cancer MDA-MB-231 cell line. gPbNPs were characterized by using X-ray diffraction (XRD), energy dispersive X-ray (EDX) scanning electron microscope (SEM), and transmission electron microscope (TEM). The toxicity of gPbNPs was determined on the MDA-MB-231 cell line using MTT and NRU assays and as a result cell viability was reduced in a concentration-dependent manner. MDA-MB-231 cells were more sensitive at the highest concentration of gPbNPs exposure. In this experiment, we observed the production of intracellular ROS in cells, and induction of caspase 3/7 was higher in cells at 42 µg/ml of gPbNPs. Moreover, the Bax gene was upregulated and the Bcl-2 gene was downregulated and increased caspase 3/7 activity confirmed the apoptotic effect of gPbNPs in cells. Our observation showed that gPbNPs induced cell toxicity, increased generation of intracellular ROS, and gene expression of Bcl-2 and Bax in the MDA-MB-231 cell line. In conclusion, these findings demonstrated that gPbNPs executed toxic effects on the MDA-MB-231 cell line through activating caspase 3/7 activity.
ISSN:1559-3258