Shooting method in the application of boundary value problems for differential equations with sign-changing weight function

In this paper, we use the shooting method to study the solvability of the boundary value problem of differential equations with sign-changing weight function: u″(t)+(λa+(t)−μa−(t))g(u)=0,0<t<T,u′(0)=0,u′(T)=0,\left\{\phantom{\rule[-1.25em]{}{0ex}}\begin{array}{l}{u}^{^{\prime\prime} }\left(t)+...

Full description

Bibliographic Details
Main Authors: Yue Xu, Xiaoling Han
Format: Article
Language:English
Published: De Gruyter 2022-08-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2022-0062
_version_ 1797998369568718848
author Yue Xu
Xiaoling Han
author_facet Yue Xu
Xiaoling Han
author_sort Yue Xu
collection DOAJ
description In this paper, we use the shooting method to study the solvability of the boundary value problem of differential equations with sign-changing weight function: u″(t)+(λa+(t)−μa−(t))g(u)=0,0<t<T,u′(0)=0,u′(T)=0,\left\{\phantom{\rule[-1.25em]{}{0ex}}\begin{array}{l}{u}^{^{\prime\prime} }\left(t)+\left(\lambda {a}^{+}\left(t)-\mu {a}^{-}\left(t))g\left(u)=0,\hspace{1.0em}0\lt t\lt T,\\ u^{\prime} \left(0)=0,\hspace{1.0em}u^{\prime} \left(T)=0,\end{array}\right. where a∈L[0,T]a\in L\left[0,T] is sign-changing and the nonlinearity g:[0,∞)→Rg:{[}0,\infty )\to {\mathbb{R}} is continuous such that g(0)=g(1)=g(2)=0g\left(0)=g\left(1)=g\left(2)=0, g(s)>0g\left(s)\gt 0 for s∈(0,1)s\in \left(0,1), g(s)<0g\left(s)\lt 0 for s∈(1,2)s\in \left(1,2).
first_indexed 2024-04-11T10:47:37Z
format Article
id doaj.art-648b7cb6133a4a40a8433ac000feb7b1
institution Directory Open Access Journal
issn 2391-5455
language English
last_indexed 2024-04-11T10:47:37Z
publishDate 2022-08-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj.art-648b7cb6133a4a40a8433ac000feb7b12022-12-22T04:29:00ZengDe GruyterOpen Mathematics2391-54552022-08-0120174375010.1515/math-2022-0062Shooting method in the application of boundary value problems for differential equations with sign-changing weight functionYue Xu0Xiaoling Han1College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, ChinaCollege of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, ChinaIn this paper, we use the shooting method to study the solvability of the boundary value problem of differential equations with sign-changing weight function: u″(t)+(λa+(t)−μa−(t))g(u)=0,0<t<T,u′(0)=0,u′(T)=0,\left\{\phantom{\rule[-1.25em]{}{0ex}}\begin{array}{l}{u}^{^{\prime\prime} }\left(t)+\left(\lambda {a}^{+}\left(t)-\mu {a}^{-}\left(t))g\left(u)=0,\hspace{1.0em}0\lt t\lt T,\\ u^{\prime} \left(0)=0,\hspace{1.0em}u^{\prime} \left(T)=0,\end{array}\right. where a∈L[0,T]a\in L\left[0,T] is sign-changing and the nonlinearity g:[0,∞)→Rg:{[}0,\infty )\to {\mathbb{R}} is continuous such that g(0)=g(1)=g(2)=0g\left(0)=g\left(1)=g\left(2)=0, g(s)>0g\left(s)\gt 0 for s∈(0,1)s\in \left(0,1), g(s)<0g\left(s)\lt 0 for s∈(1,2)s\in \left(1,2).https://doi.org/10.1515/math-2022-0062boundary value problemsign-changing weight functionpositive solutionsshooting method34b1534b18
spellingShingle Yue Xu
Xiaoling Han
Shooting method in the application of boundary value problems for differential equations with sign-changing weight function
Open Mathematics
boundary value problem
sign-changing weight function
positive solutions
shooting method
34b15
34b18
title Shooting method in the application of boundary value problems for differential equations with sign-changing weight function
title_full Shooting method in the application of boundary value problems for differential equations with sign-changing weight function
title_fullStr Shooting method in the application of boundary value problems for differential equations with sign-changing weight function
title_full_unstemmed Shooting method in the application of boundary value problems for differential equations with sign-changing weight function
title_short Shooting method in the application of boundary value problems for differential equations with sign-changing weight function
title_sort shooting method in the application of boundary value problems for differential equations with sign changing weight function
topic boundary value problem
sign-changing weight function
positive solutions
shooting method
34b15
34b18
url https://doi.org/10.1515/math-2022-0062
work_keys_str_mv AT yuexu shootingmethodintheapplicationofboundaryvalueproblemsfordifferentialequationswithsignchangingweightfunction
AT xiaolinghan shootingmethodintheapplicationofboundaryvalueproblemsfordifferentialequationswithsignchangingweightfunction