Application of the Variance Delay Fuzzy Approximate Entropy for Autonomic Nervous System Fluctuation Analysis in Obstructive Sleep Apnea Patients

Obstructive sleep apnea (OSA) is a fatal respiratory disease occurring in sleep. OSA can induce declined heart rate variability (HRV) and was reported to have autonomic nerve system (ANS) dysfunction. Variance delay fuzzy approximate entropy (VD_fApEn) was proposed as a nonlinear index to study the...

Full description

Bibliographic Details
Main Authors: Yifan Li, Shan Wu, Quanan Yang, Guanzheng Liu, Leijiao Ge
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/9/915
Description
Summary:Obstructive sleep apnea (OSA) is a fatal respiratory disease occurring in sleep. OSA can induce declined heart rate variability (HRV) and was reported to have autonomic nerve system (ANS) dysfunction. Variance delay fuzzy approximate entropy (VD_fApEn) was proposed as a nonlinear index to study the fluctuation change of ANS in OSA patients. Sixty electrocardiogram (ECG) recordings of the PhysioNet database (20 normal, 14 mild-moderate OSA, and 26 severe OSA) were intercepted for 6 h and divided into 5-min segments. HRV analysis were adopted in traditional frequency domain, and nonlinear HRV indices were also calculated. Among these indices, VD_fApEn could significantly differentiate among the three groups (<i>p</i> < 0.05) compared with the ratio of low frequency power and high frequency power (LF/HF ratio) and fuzzy approximate entropy (fApEn). Moreover, the VD_fApEn (90%) reached a higher OSA screening accuracy compared with LF/HF ratio (80%) and fApEn (78.3%). Therefore, VD_fApEn provides a potential clinical method for ANS fluctuation analysis in OSA patients and OSA severity analysis.
ISSN:1099-4300