Summary: | Abstract Natural based inhibitors of monoamine oxidase are promising drug candidates for the treatment of several neurodegenerative and neuropsychological disorders including depression, anxiety, Parkinson’s disease and Alzheimer’s disease. In the present study we designed and synthesized the eugenol based derivatives and investigated them for human MAO inhibitory potential as promising candidates for therapeutics of neurological disorders. Moreover, radical scavenging activity of designed derivatives was tested by and H2O2 and DPPH scavenging methods. Eugenol based derivatives were designed and synthesized for human MAO inhibitory action. The in silico and in vitro models were utilized for the evaluation of hMAO inhibition. The insight into molecular interactions among the compounds and both hMAO-A and hMAO-B active site was achieved by molecular docking studies. The two spectrophotometric titrations techniques were used to evaluate antioxidant potential. Compounds 5b and 16 were found as most active hMAO-A inhibitors with IC50 values of 5.989 ± 0.007 µM and 7.348 ± 0.027 µM respectively, through an appreciable selectivity index value of 0.19 and 0.14 respectively. In case of hMAO-B inhibition compounds 13a and 13b were found as most active hMAO-B inhibitors with IC50 values of 7.494 ± 0.014 µM and 9.183 ± 0.034 µM receptively and outstanding value of selectivity index of 5.14 and 5.72 respectively. Radical scavenging assay showed that compounds 5b, 5a, 9b, 9a were active antioxidants. The findings of present study indicated excellent correlation among dry lab and wet lab hMAO inhibitory experiments. Interestingly, the compounds exhibiting better MAO inhibition activity was also appeared as good antioxidant agents.
|