PINT: Maximum-likelihood Estimation of Pulsar Timing Noise Parameters
PINT is a pure-Python framework for high-precision pulsar timing developed on top of widely used and well-tested Python libraries, supporting both interactive and programmatic data analysis workflows. We present a new frequentist framework within PINT to characterize the single-pulsar noise processe...
Autors principals: | Abhimanyu Susobhanan, David L. Kaplan, Anne M. Archibald, Jing Luo, Paul S. Ray, Timothy T. Pennucci, Scott M. Ransom, Gabriella Agazie, William Fiore, Bjorn Larsen, Patrick O’Neill, Rutger van Haasteren, Akash Anumarlapudi, Matteo Bachetti, Deven Bhakta, Chloe A. Champagne, H. Thankful Cromartie, Paul B. Demorest, Ross J. Jennings, Matthew Kerr, Sasha Levina, Alexander McEwen, Brent J. Shapiro-Albert, Joseph K. Swiggum |
---|---|
Format: | Article |
Idioma: | English |
Publicat: |
IOP Publishing
2024-01-01
|
Col·lecció: | The Astrophysical Journal |
Matèries: | |
Accés en línia: | https://doi.org/10.3847/1538-4357/ad59f7 |
Ítems similars
-
Bayesian Pulsar Timing and Noise Analysis with Vela.jl: An Overview
per: Abhimanyu Susobhanan
Publicat: (2025-01-01) -
A Pilot Study of Nulling in 22 Pulsars Using Mixture Modeling
per: Akash Anumarlapudi, et al.
Publicat: (2023-01-01) -
The NANOGrav 15 yr Data Set: Chromatic Gaussian Process Noise Models for Six Pulsars
per: Bjorn Larsen, et al.
Publicat: (2024-01-01) -
Bits Missing: Finding Exotic Pulsars Using bfloat16 on NVIDIA GPUs
per: Jack White, et al.
Publicat: (2023-01-01) -
High-cadence Timing of Binary Pulsars with CHIME
per: Chia Min Tan, et al.
Publicat: (2024-01-01)