Temporal Variation of SOC Enrichment from Interrill Erosion over Prolonged Rainfall Simulations
Sediment generated by interrill erosion is commonly assumed to be enriched in soil organic carbon (SOC) compared to the source soil. However, the reported SOC enrichment ratios (ERSOC) vary widely. It is also noteworthy that most studies reported that the ERSOC is greater than unity, while conservat...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2013-10-01
|
Series: | Agriculture |
Subjects: | |
Online Access: | http://www.mdpi.com/2077-0472/3/4/726 |
_version_ | 1818351185911873536 |
---|---|
author | Yaxian Hu Wolfgang Fister Nikolaus J. Kuhn |
author_facet | Yaxian Hu Wolfgang Fister Nikolaus J. Kuhn |
author_sort | Yaxian Hu |
collection | DOAJ |
description | Sediment generated by interrill erosion is commonly assumed to be enriched in soil organic carbon (SOC) compared to the source soil. However, the reported SOC enrichment ratios (ERSOC) vary widely. It is also noteworthy that most studies reported that the ERSOC is greater than unity, while conservation of mass dictates that the ERSOC of sediment must be balanced over time by a decline of SOC in the source area material. Although the effects of crusting on SOC erosion have been recognized, a systematic study on complete crust formation and interrill SOC erosion has not been conducted so far. The aim of this study was to analyze the effect of prolonged crust formation and its variability on the ERSOC of sediment. Two silty loams were simultaneously exposed to a rainfall simulation for 6 h. The ERSOC in sediment from both soils increased at first, peaked around the point when steady-state runoff was achieved and declined afterwards. The results show that crusting plays a crucial role in the ERSOC development over time and, in particular, that the conservation of mass applies to the ERSOC of sediment as a consequence of crusting. A “constant” ERSOC of sediment is therefore possibly biased, leading to an overestimation of SOC erosion. The results illustrate that the potential off-site effects of selective interrill erosion require considering the crusting effects on sediment properties in the specific context of the interaction between soil management, rainfall and erosion. |
first_indexed | 2024-12-13T18:33:44Z |
format | Article |
id | doaj.art-64a3a4f239934d92995bbbb295b6edc9 |
institution | Directory Open Access Journal |
issn | 2077-0472 |
language | English |
last_indexed | 2024-12-13T18:33:44Z |
publishDate | 2013-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Agriculture |
spelling | doaj.art-64a3a4f239934d92995bbbb295b6edc92022-12-21T23:35:26ZengMDPI AGAgriculture2077-04722013-10-013472674010.3390/agriculture3040726Temporal Variation of SOC Enrichment from Interrill Erosion over Prolonged Rainfall SimulationsYaxian HuWolfgang FisterNikolaus J. KuhnSediment generated by interrill erosion is commonly assumed to be enriched in soil organic carbon (SOC) compared to the source soil. However, the reported SOC enrichment ratios (ERSOC) vary widely. It is also noteworthy that most studies reported that the ERSOC is greater than unity, while conservation of mass dictates that the ERSOC of sediment must be balanced over time by a decline of SOC in the source area material. Although the effects of crusting on SOC erosion have been recognized, a systematic study on complete crust formation and interrill SOC erosion has not been conducted so far. The aim of this study was to analyze the effect of prolonged crust formation and its variability on the ERSOC of sediment. Two silty loams were simultaneously exposed to a rainfall simulation for 6 h. The ERSOC in sediment from both soils increased at first, peaked around the point when steady-state runoff was achieved and declined afterwards. The results show that crusting plays a crucial role in the ERSOC development over time and, in particular, that the conservation of mass applies to the ERSOC of sediment as a consequence of crusting. A “constant” ERSOC of sediment is therefore possibly biased, leading to an overestimation of SOC erosion. The results illustrate that the potential off-site effects of selective interrill erosion require considering the crusting effects on sediment properties in the specific context of the interaction between soil management, rainfall and erosion.http://www.mdpi.com/2077-0472/3/4/726interrill erosionSOC enrichment ratiotemporal variationcrust formationprolonged rainfall duration |
spellingShingle | Yaxian Hu Wolfgang Fister Nikolaus J. Kuhn Temporal Variation of SOC Enrichment from Interrill Erosion over Prolonged Rainfall Simulations Agriculture interrill erosion SOC enrichment ratio temporal variation crust formation prolonged rainfall duration |
title | Temporal Variation of SOC Enrichment from Interrill Erosion over Prolonged Rainfall Simulations |
title_full | Temporal Variation of SOC Enrichment from Interrill Erosion over Prolonged Rainfall Simulations |
title_fullStr | Temporal Variation of SOC Enrichment from Interrill Erosion over Prolonged Rainfall Simulations |
title_full_unstemmed | Temporal Variation of SOC Enrichment from Interrill Erosion over Prolonged Rainfall Simulations |
title_short | Temporal Variation of SOC Enrichment from Interrill Erosion over Prolonged Rainfall Simulations |
title_sort | temporal variation of soc enrichment from interrill erosion over prolonged rainfall simulations |
topic | interrill erosion SOC enrichment ratio temporal variation crust formation prolonged rainfall duration |
url | http://www.mdpi.com/2077-0472/3/4/726 |
work_keys_str_mv | AT yaxianhu temporalvariationofsocenrichmentfrominterrillerosionoverprolongedrainfallsimulations AT wolfgangfister temporalvariationofsocenrichmentfrominterrillerosionoverprolongedrainfallsimulations AT nikolausjkuhn temporalvariationofsocenrichmentfrominterrillerosionoverprolongedrainfallsimulations |