Prediction of Added Resistance of Container Ships in Regular Head Waves Using an Artificial Neural Network

In this paper, an artificial neural network was used to predict the added resistance coefficient for container ships in regular head waves for various speeds. The data used for training the neural network were gathered based on performed numerical calculations using the Boundary Integral Element Met...

Full description

Bibliographic Details
Main Authors: Ivana Martić, Nastia Degiuli, Carlo Giorgio Grlj
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/11/7/1293
Description
Summary:In this paper, an artificial neural network was used to predict the added resistance coefficient for container ships in regular head waves for various speeds. The data used for training the neural network were gathered based on performed numerical calculations using the Boundary Integral Element Method for various hull forms of container ships. The numerically obtained results were validated against the available experimental data for three benchmark container ships. The data were divided into three classes based on the ship length, and the expressions for the prediction of the added resistance coefficient for each container ship class were provided. The performance and generalization properties of the neural network were evaluated based on the normalized value of the root mean square error. The model enables reliable prediction of the added resistance coefficient within the preliminary design stage of a ship based on the ship characteristics and speed.
ISSN:2077-1312