Potential of Electrospun Fibrous Scaffolds for Intestinal, Skin, and Lung Epithelial Tissue Modeling
Herein, intestinal, skin, and pulmonary in vitro tissue models based on electrospun membranes of poly(ε‐caprolactone) (PCL) and cellulose acetate (CA), cellulose acetate phthalate (CAP), ethylcellulose (EC), or methylcellulose (MC) are presented. Physicochemical characterization and biocompatibility...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley-VCH
2023-04-01
|
Series: | Advanced NanoBiomed Research |
Subjects: | |
Online Access: | https://doi.org/10.1002/anbr.202200104 |
_version_ | 1797776448117800960 |
---|---|
author | Andreia M. Gonçalves Filipa Leal Anabela Moreira Tobias Schellhorn Veronika Hefka Blahnová Scarlett Zeiringer Karolina Vocetková Carolin Tetyczka Aiva Simaite Matej Buzgo Eva Roblegg Pedro F. Costa Peter Ertl Eva Filová Yvonne Kohl |
author_facet | Andreia M. Gonçalves Filipa Leal Anabela Moreira Tobias Schellhorn Veronika Hefka Blahnová Scarlett Zeiringer Karolina Vocetková Carolin Tetyczka Aiva Simaite Matej Buzgo Eva Roblegg Pedro F. Costa Peter Ertl Eva Filová Yvonne Kohl |
author_sort | Andreia M. Gonçalves |
collection | DOAJ |
description | Herein, intestinal, skin, and pulmonary in vitro tissue models based on electrospun membranes of poly(ε‐caprolactone) (PCL) and cellulose acetate (CA), cellulose acetate phthalate (CAP), ethylcellulose (EC), or methylcellulose (MC) are presented. Physicochemical characterization and biocompatibility analyses of the scaffolds are carried out using colorectal adenocarcinoma cells (intestine), keratinocytes and fibroblasts (skin), and bronchial and alveolar epithelial cells (lung). PCL, PCL:CA, and PCL:EC are composed of nanofibers, whereas PCL:CAP and PCL:MC scaffolds comprise a combination of micro‐ and nanofibers. PCL, PCL:CA, PCL:CAP, and PCL:EC samples demonstrate water contact angles greater than 90° and are, therefore, hydrophobic, while PCL:MC mats display a hydrophilic behavior. In intestinal models, cells adhere and proliferate on all scaffolds; in turn, studies with skin cell models reveal that PCL:CA and PCL:CAP blends outperform all other substrates. Lung cell models show that, while 16HBE cells adhere to and proliferate in PCL, PCL:CA, PCL:EC, and PCL:MC scaffolds, A549 cells only have the same biological response on PCL, PCL:CA, and PCL:MC. In summary, all fibrous meshes prepared are biocompatible toward most cell types tested, thus suggesting the potential of PCL‐cellulose derivative blends as substrates suitable for in vitro epithelial tissue modeling and toxicity screening. |
first_indexed | 2024-03-12T22:50:07Z |
format | Article |
id | doaj.art-64a58d4b8e81407d954c7d5558132342 |
institution | Directory Open Access Journal |
issn | 2699-9307 |
language | English |
last_indexed | 2024-03-12T22:50:07Z |
publishDate | 2023-04-01 |
publisher | Wiley-VCH |
record_format | Article |
series | Advanced NanoBiomed Research |
spelling | doaj.art-64a58d4b8e81407d954c7d55581323422023-07-20T12:56:21ZengWiley-VCHAdvanced NanoBiomed Research2699-93072023-04-0134n/an/a10.1002/anbr.202200104Potential of Electrospun Fibrous Scaffolds for Intestinal, Skin, and Lung Epithelial Tissue ModelingAndreia M. Gonçalves0Filipa Leal1Anabela Moreira2Tobias Schellhorn3Veronika Hefka Blahnová4Scarlett Zeiringer5Karolina Vocetková6Carolin Tetyczka7Aiva Simaite8Matej Buzgo9Eva Roblegg10Pedro F. Costa11Peter Ertl12Eva Filová13Yvonne Kohl14BIOFABICS Rua Alfredo Allen 455 4200-135 Porto PortugalBIOFABICS Rua Alfredo Allen 455 4200-135 Porto PortugalBIOFABICS Rua Alfredo Allen 455 4200-135 Porto PortugalInstitute of Chemical Technologies and Analytics Vienna University of Technology Getreidemarkt 9/164 1060 Vienna AustriaInstitute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 14220 Prague CzechiaInstitute of Pharmaceutical Sciences University of Graz Universitaetsplatz 1 8010 Graz AustriaInstitute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 14220 Prague CzechiaInstitute of Pharmaceutical Sciences University of Graz Universitaetsplatz 1 8010 Graz AustriaInoCure s.r.o. Politických vězňů 935/13 11000 Praha 1 Prague Czech RepublicBIOFABICS Rua Alfredo Allen 455 4200-135 Porto PortugalInstitute of Pharmaceutical Sciences University of Graz Universitaetsplatz 1 8010 Graz AustriaBIOFABICS Rua Alfredo Allen 455 4200-135 Porto PortugalInstitute of Chemical Technologies and Analytics Vienna University of Technology Getreidemarkt 9/164 1060 Vienna AustriaInstitute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 14220 Prague CzechiaFraunhofer Institute for Biomedical Engineering IBMT Joseph-von-Fraunhofer-Weg 1 66280 Sulzbach/Saar GermanyHerein, intestinal, skin, and pulmonary in vitro tissue models based on electrospun membranes of poly(ε‐caprolactone) (PCL) and cellulose acetate (CA), cellulose acetate phthalate (CAP), ethylcellulose (EC), or methylcellulose (MC) are presented. Physicochemical characterization and biocompatibility analyses of the scaffolds are carried out using colorectal adenocarcinoma cells (intestine), keratinocytes and fibroblasts (skin), and bronchial and alveolar epithelial cells (lung). PCL, PCL:CA, and PCL:EC are composed of nanofibers, whereas PCL:CAP and PCL:MC scaffolds comprise a combination of micro‐ and nanofibers. PCL, PCL:CA, PCL:CAP, and PCL:EC samples demonstrate water contact angles greater than 90° and are, therefore, hydrophobic, while PCL:MC mats display a hydrophilic behavior. In intestinal models, cells adhere and proliferate on all scaffolds; in turn, studies with skin cell models reveal that PCL:CA and PCL:CAP blends outperform all other substrates. Lung cell models show that, while 16HBE cells adhere to and proliferate in PCL, PCL:CA, PCL:EC, and PCL:MC scaffolds, A549 cells only have the same biological response on PCL, PCL:CA, and PCL:MC. In summary, all fibrous meshes prepared are biocompatible toward most cell types tested, thus suggesting the potential of PCL‐cellulose derivative blends as substrates suitable for in vitro epithelial tissue modeling and toxicity screening.https://doi.org/10.1002/anbr.2022001043R principlecelluloseelectrospinningepithelial barrierin vitro modelstoxicological screening |
spellingShingle | Andreia M. Gonçalves Filipa Leal Anabela Moreira Tobias Schellhorn Veronika Hefka Blahnová Scarlett Zeiringer Karolina Vocetková Carolin Tetyczka Aiva Simaite Matej Buzgo Eva Roblegg Pedro F. Costa Peter Ertl Eva Filová Yvonne Kohl Potential of Electrospun Fibrous Scaffolds for Intestinal, Skin, and Lung Epithelial Tissue Modeling Advanced NanoBiomed Research 3R principle cellulose electrospinning epithelial barrier in vitro models toxicological screening |
title | Potential of Electrospun Fibrous Scaffolds for Intestinal, Skin, and Lung Epithelial Tissue Modeling |
title_full | Potential of Electrospun Fibrous Scaffolds for Intestinal, Skin, and Lung Epithelial Tissue Modeling |
title_fullStr | Potential of Electrospun Fibrous Scaffolds for Intestinal, Skin, and Lung Epithelial Tissue Modeling |
title_full_unstemmed | Potential of Electrospun Fibrous Scaffolds for Intestinal, Skin, and Lung Epithelial Tissue Modeling |
title_short | Potential of Electrospun Fibrous Scaffolds for Intestinal, Skin, and Lung Epithelial Tissue Modeling |
title_sort | potential of electrospun fibrous scaffolds for intestinal skin and lung epithelial tissue modeling |
topic | 3R principle cellulose electrospinning epithelial barrier in vitro models toxicological screening |
url | https://doi.org/10.1002/anbr.202200104 |
work_keys_str_mv | AT andreiamgoncalves potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling AT filipaleal potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling AT anabelamoreira potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling AT tobiasschellhorn potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling AT veronikahefkablahnova potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling AT scarlettzeiringer potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling AT karolinavocetkova potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling AT carolintetyczka potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling AT aivasimaite potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling AT matejbuzgo potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling AT evaroblegg potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling AT pedrofcosta potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling AT peterertl potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling AT evafilova potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling AT yvonnekohl potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling |