Potential of Electrospun Fibrous Scaffolds for Intestinal, Skin, and Lung Epithelial Tissue Modeling

Herein, intestinal, skin, and pulmonary in vitro tissue models based on electrospun membranes of poly(ε‐caprolactone) (PCL) and cellulose acetate (CA), cellulose acetate phthalate (CAP), ethylcellulose (EC), or methylcellulose (MC) are presented. Physicochemical characterization and biocompatibility...

Full description

Bibliographic Details
Main Authors: Andreia M. Gonçalves, Filipa Leal, Anabela Moreira, Tobias Schellhorn, Veronika Hefka Blahnová, Scarlett Zeiringer, Karolina Vocetková, Carolin Tetyczka, Aiva Simaite, Matej Buzgo, Eva Roblegg, Pedro F. Costa, Peter Ertl, Eva Filová, Yvonne Kohl
Format: Article
Language:English
Published: Wiley-VCH 2023-04-01
Series:Advanced NanoBiomed Research
Subjects:
Online Access:https://doi.org/10.1002/anbr.202200104
_version_ 1797776448117800960
author Andreia M. Gonçalves
Filipa Leal
Anabela Moreira
Tobias Schellhorn
Veronika Hefka Blahnová
Scarlett Zeiringer
Karolina Vocetková
Carolin Tetyczka
Aiva Simaite
Matej Buzgo
Eva Roblegg
Pedro F. Costa
Peter Ertl
Eva Filová
Yvonne Kohl
author_facet Andreia M. Gonçalves
Filipa Leal
Anabela Moreira
Tobias Schellhorn
Veronika Hefka Blahnová
Scarlett Zeiringer
Karolina Vocetková
Carolin Tetyczka
Aiva Simaite
Matej Buzgo
Eva Roblegg
Pedro F. Costa
Peter Ertl
Eva Filová
Yvonne Kohl
author_sort Andreia M. Gonçalves
collection DOAJ
description Herein, intestinal, skin, and pulmonary in vitro tissue models based on electrospun membranes of poly(ε‐caprolactone) (PCL) and cellulose acetate (CA), cellulose acetate phthalate (CAP), ethylcellulose (EC), or methylcellulose (MC) are presented. Physicochemical characterization and biocompatibility analyses of the scaffolds are carried out using colorectal adenocarcinoma cells (intestine), keratinocytes and fibroblasts (skin), and bronchial and alveolar epithelial cells (lung). PCL, PCL:CA, and PCL:EC are composed of nanofibers, whereas PCL:CAP and PCL:MC scaffolds comprise a combination of micro‐ and nanofibers. PCL, PCL:CA, PCL:CAP, and PCL:EC samples demonstrate water contact angles greater than 90° and are, therefore, hydrophobic, while PCL:MC mats display a hydrophilic behavior. In intestinal models, cells adhere and proliferate on all scaffolds; in turn, studies with skin cell models reveal that PCL:CA and PCL:CAP blends outperform all other substrates. Lung cell models show that, while 16HBE cells adhere to and proliferate in PCL, PCL:CA, PCL:EC, and PCL:MC scaffolds, A549 cells only have the same biological response on PCL, PCL:CA, and PCL:MC. In summary, all fibrous meshes prepared are biocompatible toward most cell types tested, thus suggesting the potential of PCL‐cellulose derivative blends as substrates suitable for in vitro epithelial tissue modeling and toxicity screening.
first_indexed 2024-03-12T22:50:07Z
format Article
id doaj.art-64a58d4b8e81407d954c7d5558132342
institution Directory Open Access Journal
issn 2699-9307
language English
last_indexed 2024-03-12T22:50:07Z
publishDate 2023-04-01
publisher Wiley-VCH
record_format Article
series Advanced NanoBiomed Research
spelling doaj.art-64a58d4b8e81407d954c7d55581323422023-07-20T12:56:21ZengWiley-VCHAdvanced NanoBiomed Research2699-93072023-04-0134n/an/a10.1002/anbr.202200104Potential of Electrospun Fibrous Scaffolds for Intestinal, Skin, and Lung Epithelial Tissue ModelingAndreia M. Gonçalves0Filipa Leal1Anabela Moreira2Tobias Schellhorn3Veronika Hefka Blahnová4Scarlett Zeiringer5Karolina Vocetková6Carolin Tetyczka7Aiva Simaite8Matej Buzgo9Eva Roblegg10Pedro F. Costa11Peter Ertl12Eva Filová13Yvonne Kohl14BIOFABICS Rua Alfredo Allen 455 4200-135 Porto PortugalBIOFABICS Rua Alfredo Allen 455 4200-135 Porto PortugalBIOFABICS Rua Alfredo Allen 455 4200-135 Porto PortugalInstitute of Chemical Technologies and Analytics Vienna University of Technology Getreidemarkt 9/164 1060 Vienna AustriaInstitute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 14220 Prague CzechiaInstitute of Pharmaceutical Sciences University of Graz Universitaetsplatz 1 8010 Graz AustriaInstitute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 14220 Prague CzechiaInstitute of Pharmaceutical Sciences University of Graz Universitaetsplatz 1 8010 Graz AustriaInoCure s.r.o. Politických vězňů 935/13 11000 Praha 1 Prague Czech RepublicBIOFABICS Rua Alfredo Allen 455 4200-135 Porto PortugalInstitute of Pharmaceutical Sciences University of Graz Universitaetsplatz 1 8010 Graz AustriaBIOFABICS Rua Alfredo Allen 455 4200-135 Porto PortugalInstitute of Chemical Technologies and Analytics Vienna University of Technology Getreidemarkt 9/164 1060 Vienna AustriaInstitute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 14220 Prague CzechiaFraunhofer Institute for Biomedical Engineering IBMT Joseph-von-Fraunhofer-Weg 1 66280 Sulzbach/Saar GermanyHerein, intestinal, skin, and pulmonary in vitro tissue models based on electrospun membranes of poly(ε‐caprolactone) (PCL) and cellulose acetate (CA), cellulose acetate phthalate (CAP), ethylcellulose (EC), or methylcellulose (MC) are presented. Physicochemical characterization and biocompatibility analyses of the scaffolds are carried out using colorectal adenocarcinoma cells (intestine), keratinocytes and fibroblasts (skin), and bronchial and alveolar epithelial cells (lung). PCL, PCL:CA, and PCL:EC are composed of nanofibers, whereas PCL:CAP and PCL:MC scaffolds comprise a combination of micro‐ and nanofibers. PCL, PCL:CA, PCL:CAP, and PCL:EC samples demonstrate water contact angles greater than 90° and are, therefore, hydrophobic, while PCL:MC mats display a hydrophilic behavior. In intestinal models, cells adhere and proliferate on all scaffolds; in turn, studies with skin cell models reveal that PCL:CA and PCL:CAP blends outperform all other substrates. Lung cell models show that, while 16HBE cells adhere to and proliferate in PCL, PCL:CA, PCL:EC, and PCL:MC scaffolds, A549 cells only have the same biological response on PCL, PCL:CA, and PCL:MC. In summary, all fibrous meshes prepared are biocompatible toward most cell types tested, thus suggesting the potential of PCL‐cellulose derivative blends as substrates suitable for in vitro epithelial tissue modeling and toxicity screening.https://doi.org/10.1002/anbr.2022001043R principlecelluloseelectrospinningepithelial barrierin vitro modelstoxicological screening
spellingShingle Andreia M. Gonçalves
Filipa Leal
Anabela Moreira
Tobias Schellhorn
Veronika Hefka Blahnová
Scarlett Zeiringer
Karolina Vocetková
Carolin Tetyczka
Aiva Simaite
Matej Buzgo
Eva Roblegg
Pedro F. Costa
Peter Ertl
Eva Filová
Yvonne Kohl
Potential of Electrospun Fibrous Scaffolds for Intestinal, Skin, and Lung Epithelial Tissue Modeling
Advanced NanoBiomed Research
3R principle
cellulose
electrospinning
epithelial barrier
in vitro models
toxicological screening
title Potential of Electrospun Fibrous Scaffolds for Intestinal, Skin, and Lung Epithelial Tissue Modeling
title_full Potential of Electrospun Fibrous Scaffolds for Intestinal, Skin, and Lung Epithelial Tissue Modeling
title_fullStr Potential of Electrospun Fibrous Scaffolds for Intestinal, Skin, and Lung Epithelial Tissue Modeling
title_full_unstemmed Potential of Electrospun Fibrous Scaffolds for Intestinal, Skin, and Lung Epithelial Tissue Modeling
title_short Potential of Electrospun Fibrous Scaffolds for Intestinal, Skin, and Lung Epithelial Tissue Modeling
title_sort potential of electrospun fibrous scaffolds for intestinal skin and lung epithelial tissue modeling
topic 3R principle
cellulose
electrospinning
epithelial barrier
in vitro models
toxicological screening
url https://doi.org/10.1002/anbr.202200104
work_keys_str_mv AT andreiamgoncalves potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling
AT filipaleal potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling
AT anabelamoreira potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling
AT tobiasschellhorn potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling
AT veronikahefkablahnova potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling
AT scarlettzeiringer potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling
AT karolinavocetkova potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling
AT carolintetyczka potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling
AT aivasimaite potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling
AT matejbuzgo potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling
AT evaroblegg potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling
AT pedrofcosta potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling
AT peterertl potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling
AT evafilova potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling
AT yvonnekohl potentialofelectrospunfibrousscaffoldsforintestinalskinandlungepithelialtissuemodeling