A Novel Triple-Band Terahertz Metamaterial Absorber Using a Stacked Structure of MoS<sub>2</sub> and Graphene

A MoS<sub>2</sub> and graphene stacked structure is proposed as metamaterials for a triple-band terahertz absorber in this work. The complementary frequency-selective surface of the absorber, consisting of two crossed linear slots and four pairs of concentric circular slots, has three ab...

Full description

Bibliographic Details
Main Authors: Fei Cai, Zhifei Kou
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/10/6/643
Description
Summary:A MoS<sub>2</sub> and graphene stacked structure is proposed as metamaterials for a triple-band terahertz absorber in this work. The complementary frequency-selective surface of the absorber, consisting of two crossed linear slots and four pairs of concentric circular slots, has three absorptions at 0.6 THz (99.7%), 1.5 THz (95.4%), and 2.5 THz (99.5%). The polarization of the THz absorber is less sensitive to the incident angle within a certain range. By controlling the material properties of MoS<sub>2</sub> and graphene, the peak absorption frequency can be tuned within a certain range. The stacked structure of different 2D materials provides new ideas for the design of the THz absorber, which is important for THz in detection, communication, and imaging applications.
ISSN:2304-6732