Summary: | Acid mine drainage was utilized to catalyze the solar photo-Fenton treatment of wastewater coming from a sludge dewatering system. Acid mine drainage in the form of iron-rich liquid or synthesized minerals (namely magnetite, hematite, and goethite) was added in the wastewater, which was treated by means of the solar photo-Fenton process. The effects of operational parameters such as the amount of acid mine drainage, the wastewater matrix (i.e., synthetic and real wastewater), and the initial H<sub>2</sub>O<sub>2</sub> concentration municipal wastewater’s organic content were explored. The results showed that using acid mine drainage (liquid phase) for wastewater treatment was more efficient than using the acid-mine-drainage-recovered minerals. Moreover, it was observed that the addition of acid mine drainage above 10.7 mL/L wastewater, which is equivalent to 50 mg/L iron, could substantially reduce the removal percentage of the chemical oxygen demand (COD). At the best conditions assayed, COD removal reached 99% after 90 min of photo-Fenton treatment under simulated solar light, in the presence of 30 mg/L Fe (i.e., 6.4 mL drainage/L of real wastewater) and 1000 mg/L H<sub>2</sub>O<sub>2</sub> at a pH of 2.8. Therefore, the solar photo-Fenton treatment of municipal wastewater catalyzed by acid mine drainage may appear to be a promising method to effectively improve wastewater management, especially in areas with high solar energy potential.
|