ONLINE NEWS CLASSIFICATION USING MACHINE LEARNING TECHNIQUES

A massive rise in web-based online content today pushes businesses to implement new approaches and resources that might support better navigation, processing, and handling of high-dimensional data. Over the Internet, 90% of the data is unstructured, and there are several approaches through which thi...

Full description

Bibliographic Details
Main Authors: Jeelani Ahmed, Muqeem Ahmed
Format: Article
Language:English
Published: IIUM Press, International Islamic University Malaysia 2021-07-01
Series:International Islamic University Malaysia Engineering Journal
Subjects:
Online Access:https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/1662
Description
Summary:A massive rise in web-based online content today pushes businesses to implement new approaches and resources that might support better navigation, processing, and handling of high-dimensional data. Over the Internet, 90% of the data is unstructured, and there are several approaches through which this data can translate into useful, structured data—classification is one such approach. Classification of knowledge into a good collection of groups is significant and necessary. As the number of machine-readable documents proliferates, automatic text classification is badly needed to classify these documents. Unlabeled documents are categorized into predefined classes of labeled documents using text labeling, a supervised learning technique. This paper reviewed some existing approaches for classifying online news articles and discusses a framework for the automatic classification of online news articles. For achieving high accuracy, different classifiers were tried. Our experimental method achieved 93% accuracy using a Bayesian classifier and present in terms of confusion metrics. ABSTRAK: Peningkatan tinggi pada masa kini pada maklumat dalam talian berasaskan web menyebabkan kaedah baru dalam bisnes telah diguna pakai dan sumber sokongan seperti navigasi, proses, dan pengurusan data berdimensi-tinggi adalah perlu. 90% data di internet adalah data tidak berstruktur, dan terdapat pelbagai kaedah data ini dapat diterjemahkan kepada data berguna, lebih berstruktur — iaitu melalui kaedah klasifikasi. Klasifikasi ilmu kepada koleksi kumpulan baik adalah penting dan perlu. Seperti mana mesin-boleh baca dokumen berkembang pesat, teks klasifikasi automatik juga sangat diperlukan bagi mengklasifikasi dokumen-dokumen ini. Dokumen yang tidak dilabel dikategori sebagai pengelasan pratakrif dokumen berlabel melalui teks label, iaitu teknik pembelajaran berpenyelia. Kajian ini mengkaji semula pendekatan sedia ada bagi artikel berita dalam talian dan membincangkan rangka kerja bagi pengelasan automatik artikel berita dalam talian. Bagi menghasilkan ketepatan yang tinggi, kami menggunakan pelbagai alat klasifikasi. Kaedah eksperimen ini mempunyai ketepatan 93% menggunakan pengelas Bayesian dan data dibentangkan berdasarkan matriks kekeliruan.
ISSN:1511-788X
2289-7860