Nano-Based Biomaterials as Drug Delivery Systems Against Osteoporosis: A Systematic Review of Preclinical and Clinical Evidence

Osteoporosis (OP) is one of the most significant causes of morbidity, particularly in post-menopausal women and older men. Despite its remarkable occurrence, the search for an effective treatment is still an open challenge. Here, we systematically reviewed the preclinical and clinical progress in th...

Full description

Bibliographic Details
Main Authors: Francesca Salamanna, Alessandro Gambardella, Deyanira Contartese, Andrea Visani, Milena Fini
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/11/2/530
Description
Summary:Osteoporosis (OP) is one of the most significant causes of morbidity, particularly in post-menopausal women and older men. Despite its remarkable occurrence, the search for an effective treatment is still an open challenge. Here, we systematically reviewed the preclinical and clinical progress in the development of nano-based materials as drug delivery systems against OP, considering the effects on bone healing and regeneration, the more promising composition and manufacturing methods, and the more hopeful drugs and delivery methods. The results showed that almost all the innovative nano-based delivery systems developed in the last ten years have been assessed by preclinical investigations and are still in the preliminary/early research stages. Our search strategy retrieved only one non-randomized controlled trial (RCT) on oligosaccharide nanomedicine of alginate sodium used for degenerative lumbar diseases in OP patients. Further investigations are mandatory for assessing the clinical translation and commercial purposes of these materials. To date, the main limits for the clinical translation of nano-based materials as drug delivery systems against OP are probably due to the low reproducibility of the manufacturing processes, whose specificity and complexity relies on an adequate chemical, structural, and biomechanical characterization, as the necessary prerequisite before assessing the efficacy of a given treatment or process. Finally, an unsatisfactory drug-loading capacity, an uncontrollable release kinetic, and a low delivery efficiency also limit the clinical application.
ISSN:2079-4991