Nontrivial convex solutions on a parameter of impulsive differential equation with Monge-Ampère operator

Abstract The authors consider the impulsive differential equation with Monge-Ampère operator in the form of { ( ( u ′ ( t ) ) n ) ′ = λ n t n − 1 f ( − u ( t ) ) , t ∈ ( 0 , 1 ) , t ≠ t k , k = 1 , 2 , … , m , Δ ( u ′ ) n | t = t k = λ I k ( − u ( t k ) ) , k = 1 , 2 , … , m , u ′ ( 0 ) = 0 , u ( 1...

Full description

Bibliographic Details
Main Authors: Xuemei Zhang, Meiqiang Feng
Format: Article
Language:English
Published: SpringerOpen 2017-11-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-017-0904-8
_version_ 1811211175863517184
author Xuemei Zhang
Meiqiang Feng
author_facet Xuemei Zhang
Meiqiang Feng
author_sort Xuemei Zhang
collection DOAJ
description Abstract The authors consider the impulsive differential equation with Monge-Ampère operator in the form of { ( ( u ′ ( t ) ) n ) ′ = λ n t n − 1 f ( − u ( t ) ) , t ∈ ( 0 , 1 ) , t ≠ t k , k = 1 , 2 , … , m , Δ ( u ′ ) n | t = t k = λ I k ( − u ( t k ) ) , k = 1 , 2 , … , m , u ′ ( 0 ) = 0 , u ( 1 ) = 0 , $$\textstyle\begin{cases} ( (u'(t) )^{n} )'=\lambda nt^{n-1}f (-u(t) ), \quad t\in(0,1), t\neq t_{k}, k=1, 2, \ldots, m, \\ \Delta (u' )^{n}|_{t=t_{k}}=\lambda I_{k} (-u(t_{k}) ), \quad k=1, 2, \ldots , m, \\ u'(0)=0, \quad\quad u(1)=0, \end{cases} $$ where λ is a nonnegative parameter and n ≥ 1 $n\geq1$ . We show the existence, uniqueness, and continuity results. Our approach is largely based on the eigenvalue theory and the theory of α-concave operators. The nonexistence result of a nontrivial convex solution is also studied by taking advantage of the internal geometric properties related to the problem.
first_indexed 2024-04-12T05:08:21Z
format Article
id doaj.art-64db8af0fda8414aa75ce62de9ee256a
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-04-12T05:08:21Z
publishDate 2017-11-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-64db8af0fda8414aa75ce62de9ee256a2022-12-22T03:46:50ZengSpringerOpenBoundary Value Problems1687-27702017-11-012017111710.1186/s13661-017-0904-8Nontrivial convex solutions on a parameter of impulsive differential equation with Monge-Ampère operatorXuemei Zhang0Meiqiang Feng1Department of Mathematics and Physics, North China Electric Power UniversitySchool of Applied Science, Beijing Information Science & Technology UniversityAbstract The authors consider the impulsive differential equation with Monge-Ampère operator in the form of { ( ( u ′ ( t ) ) n ) ′ = λ n t n − 1 f ( − u ( t ) ) , t ∈ ( 0 , 1 ) , t ≠ t k , k = 1 , 2 , … , m , Δ ( u ′ ) n | t = t k = λ I k ( − u ( t k ) ) , k = 1 , 2 , … , m , u ′ ( 0 ) = 0 , u ( 1 ) = 0 , $$\textstyle\begin{cases} ( (u'(t) )^{n} )'=\lambda nt^{n-1}f (-u(t) ), \quad t\in(0,1), t\neq t_{k}, k=1, 2, \ldots, m, \\ \Delta (u' )^{n}|_{t=t_{k}}=\lambda I_{k} (-u(t_{k}) ), \quad k=1, 2, \ldots , m, \\ u'(0)=0, \quad\quad u(1)=0, \end{cases} $$ where λ is a nonnegative parameter and n ≥ 1 $n\geq1$ . We show the existence, uniqueness, and continuity results. Our approach is largely based on the eigenvalue theory and the theory of α-concave operators. The nonexistence result of a nontrivial convex solution is also studied by taking advantage of the internal geometric properties related to the problem.http://link.springer.com/article/10.1186/s13661-017-0904-8continuity on a parameterexistence of nontrivial convex solutionsMonge-Ampère operatorimpulsive differential equationgeometric properties
spellingShingle Xuemei Zhang
Meiqiang Feng
Nontrivial convex solutions on a parameter of impulsive differential equation with Monge-Ampère operator
Boundary Value Problems
continuity on a parameter
existence of nontrivial convex solutions
Monge-Ampère operator
impulsive differential equation
geometric properties
title Nontrivial convex solutions on a parameter of impulsive differential equation with Monge-Ampère operator
title_full Nontrivial convex solutions on a parameter of impulsive differential equation with Monge-Ampère operator
title_fullStr Nontrivial convex solutions on a parameter of impulsive differential equation with Monge-Ampère operator
title_full_unstemmed Nontrivial convex solutions on a parameter of impulsive differential equation with Monge-Ampère operator
title_short Nontrivial convex solutions on a parameter of impulsive differential equation with Monge-Ampère operator
title_sort nontrivial convex solutions on a parameter of impulsive differential equation with monge ampere operator
topic continuity on a parameter
existence of nontrivial convex solutions
Monge-Ampère operator
impulsive differential equation
geometric properties
url http://link.springer.com/article/10.1186/s13661-017-0904-8
work_keys_str_mv AT xuemeizhang nontrivialconvexsolutionsonaparameterofimpulsivedifferentialequationwithmongeampereoperator
AT meiqiangfeng nontrivialconvexsolutionsonaparameterofimpulsivedifferentialequationwithmongeampereoperator