Pair-excitation energetics of highly correlated many-body states
A microscopic approach is developed to determine the excitation energetics of highly correlated quasi-particles in optically excited semiconductors based entirely on a pair-correlation function input. For this purpose, the Wannier equation is generalized to compute the energy per excited electron–ho...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2013-01-01
|
Series: | New Journal of Physics |
Online Access: | https://doi.org/10.1088/1367-2630/15/9/093040 |
Summary: | A microscopic approach is developed to determine the excitation energetics of highly correlated quasi-particles in optically excited semiconductors based entirely on a pair-correlation function input. For this purpose, the Wannier equation is generalized to compute the energy per excited electron–hole pair of a many-body state probed by a weak pair excitation. The scheme is verified for the degenerate Fermi gas and incoherent excitons. In a certain range of experimentally accessible parameters, a new stable quasi-particle state is predicted which consists of four to six electron–hole pairs forming a liquid droplet of fixed radius. The energetics and pair-correlation features of these ‘quantum droplets’ are analyzed. |
---|---|
ISSN: | 1367-2630 |