Multifunctional ADM hydrogel containing endothelial cell-exosomes for diabetic wound healing

Non-healing wound, with limited treatment options, remains a prevalent complication of diabetes mellitus. The underlying causes wherein include oxidative stress injury, bacterial infection, cellular dysfunction, and persistent inflammation. Acellular Dermal Matrix (ADM), a wound dressing composed of...

Full description

Bibliographic Details
Main Authors: Kaituo Xiang, Jing Chen, Jiahe Guo, Gongchi Li, Yu Kang, Cheng Wang, Tao Jiang, Maojie Zhang, Guoyong Jiang, Meng Yuan, Xuejiao Xiang, Yingpeng Xu, Sen Ren, Hewei Xiong, Xiang Xu, Wenqing Li, Xiaofan Yang, Zhenbing Chen
Format: Article
Language:English
Published: Elsevier 2023-12-01
Series:Materials Today Bio
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S259000642300323X
Description
Summary:Non-healing wound, with limited treatment options, remains a prevalent complication of diabetes mellitus. The underlying causes wherein include oxidative stress injury, bacterial infection, cellular dysfunction, and persistent inflammation. Acellular Dermal Matrix (ADM), a wound dressing composed of natural extracellular matrix and abundant bioactive factors, has been successfully developed to treat various wounds, including burns and diabetic ulcers. Protocatechualdehyde (PA) & trivalent iron ion (Fe3+) complex (Fe3+@PA) exhibits potential antioxidant and antibacterial properties. In this study, we developed a dual hydrogel network by combining Fe3+@PA complex-modified ADM with light-cured gelatin (GelMA), supplemented with exosomes derived from human umbilical vein endothelial cells (HUVEC-Exos), to create an ADM composite hydrogel system (ADM-Fe3+@PA-Exos/GelMA) with antioxidant, antibacterial, and cell-promoting functions for diabetic wound treatment. Through in vitro experiments, we investigated the biosafety, antioxidant and antibacterial properties of ADM composite hydrogel. Furthermore, we examined the protective effects of ADM composite hydrogel on diabetic wound. The above experiments collectively demonstrate that our ADM-Fe3+@PA-Exos/GelMA hydrogel promotes diabetic wound healing by eliminating bacterial infection, reduced the reactive oxygen species (ROS) levels, protecting cells against oxidative stress damage, promotingcollagen deposition and angiogenesis, which provides a promising strategy to optimize ADM for diabetic wound treatment.
ISSN:2590-0064