Modulation of cortical activity by spherical blur and its correlation with retinal defocus

Cortical activity, as recorded via electroencephalography, has been linked to the refractive error of an individual. It is however unclear which optical metric modulates this response. Here, we measured simultaneously the brain activity and the retinal defocus of a visual stimulus perceived through...

Full description

Bibliographic Details
Main Authors: Yannis Chenguiti, Samy Hamlaoui, Konogan Baranton, Satoru Otani, Elisa M. Tartaglia
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-07-01
Series:Frontiers in Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fnins.2023.1184381/full
Description
Summary:Cortical activity, as recorded via electroencephalography, has been linked to the refractive error of an individual. It is however unclear which optical metric modulates this response. Here, we measured simultaneously the brain activity and the retinal defocus of a visual stimulus perceived through several values of spherical blur. We found that, contrary to the existing literature on the topic, the cortical response as a function of the overcorrections follows a sigmoidal shape rather than the classical bell shape, with the inflection point corresponding to the subjective refraction and to the stimulus being in focus on the retina. However, surprisingly, the amplitude of the cortical response does not seem to be a good indicator of how much the stimulus is in or out of focus on the retina. Nonetheless, the defocus is not equivalent to the retinal image quality, nor is an absolute predictor of the visual performance of an individual. Simulations of the retinal image quality seem to be a powerful tool to predict the modulation of the cortical response with the refractive error.
ISSN:1662-453X