A nonlinear magnonic nano-ring resonator

Abstract The field of magnonics, which aims at using spin waves as carriers in data-processing devices, has attracted increasing interest in recent years. We present and study micromagnetically a nonlinear nanoscale magnonic ring resonator device for enabling implementations of magnonic logic gates...

Full description

Bibliographic Details
Main Authors: Qi Wang, Abbass Hamadeh, Roman Verba, Vitaliy Lomakin, Morteza Mohseni, Burkard Hillebrands, Andrii V. Chumak, Philipp Pirro
Format: Article
Language:English
Published: Nature Portfolio 2020-12-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-020-00465-6
Description
Summary:Abstract The field of magnonics, which aims at using spin waves as carriers in data-processing devices, has attracted increasing interest in recent years. We present and study micromagnetically a nonlinear nanoscale magnonic ring resonator device for enabling implementations of magnonic logic gates and neuromorphic magnonic circuits. In the linear regime, this device efficiently suppresses spin-wave transmission using the phenomenon of critical resonant coupling, thus exhibiting the behavior of a notch filter. By increasing the spin-wave input power, the resonance frequency is shifted, leading to transmission curves, depending on the frequency, reminiscent of the activation functions of neurons, or showing the characteristics of a power limiter. An analytical theory is developed to describe the transmission curve of magnonic ring resonators in the linear and nonlinear regimes, and is validated by a comprehensive micromagnetic study. The proposed magnonic ring resonator provides a multi-functional nonlinear building block for unconventional magnonic circuits.
ISSN:2057-3960