Tire Defects Classification Using Convolution Architecture for Fast Feature Embedding

Convolutional Neural Network (CNN) has become an increasingly important research field in machine learning and computer vision. Deep image features can be learned and subsequently used for detection, classification and retrieval tasks in an end-to-end model. In this paper, a supervised feature embed...

Full description

Bibliographic Details
Main Authors: Yan Zhang, Xuehong Cui, Yun Liu, Bin Yu
Format: Article
Language:English
Published: Springer 2018-01-01
Series:International Journal of Computational Intelligence Systems
Subjects:
Online Access:https://www.atlantis-press.com/article/25895960/view
Description
Summary:Convolutional Neural Network (CNN) has become an increasingly important research field in machine learning and computer vision. Deep image features can be learned and subsequently used for detection, classification and retrieval tasks in an end-to-end model. In this paper, a supervised feature embedded deep learning based tire defects classification method is proposed. We probe into deep learning based image classification problems with application to real-world industrial tasks. Combined regularization techniques are applied for training to boost the performance. Experimental results show that our scheme receives satisfactory classification accuracy and outperforms state-of-the-art methods.
ISSN:1875-6883