Modelling and Investigation of a Hybrid Thermal Energy Harvester

The presented paper deals with dynamical and experimental investigations of a hybrid energy harvester containing shape memory alloy (SMA) wire and elastic cantilever with piezoelectric layer. The SMA wire periodically changes its temperature under the influence of a heated plate that approaches and...

Full description

Bibliographic Details
Main Authors: Todorov Todor, Nikolov Nikolay, Todorov Georgi, Ralev Yanko
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201814812002
Description
Summary:The presented paper deals with dynamical and experimental investigations of a hybrid energy harvester containing shape memory alloy (SMA) wire and elastic cantilever with piezoelectric layer. The SMA wire periodically changes its temperature under the influence of a heated plate that approaches and moves away from the SMA wire. The change of SMA wire length causes rotation of the hot plate. The plate is heated by a heater with constant temperature. The repeated SMA wire extensions and contractions bend the piezoelectric cantilever which generates electric charges. The shape memory effect is presented as a temperature approximation of the Young’s modulus. A dynamical model of the energy harvester is created and some analytical investigations are presented. With the help of an experimental setup the acceleration, the force, the temperature, and the output voltage have been measured. The theoretical results are validated experimentally. Some conclusions are made about the best performance of the energy harvester.
ISSN:2261-236X