Summary: | We study behavior of the topological entropy as the function of parameters for two-parameter family of symmetric Lorenz maps Tc,ɛ(x) = (−1 + c|x|1−ɛ) · sgn(x). This is the normal form for splitting the homoclinic loop in systems which have a saddle equilibrium with one-dimensional unstable manifold and zero saddle value. Due to L.P. Shilnikov results, such a bifurcation corresponds to the birth of Lorenz attractor (when the saddle value becomes positive). We indicate those regions in the bifurcation plane where the topological entropy depends monotonically on the parameter c, as well as those for which the monotonicity does not take place. Also, we indicate the corresponding bifurcations for the Lorenz attractors.
|