The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter

Abstract Background Wintersweet (Chimonanthus praecox), an important ornamental plant, has evolved unique fragrant aroma and winter-flowering properties, which are critical for its successful sexual reproduction. However, the molecular mechanisms underlying these traits are largely unknown in this s...

Full description

Bibliographic Details
Main Authors: Junzhong Shang, Jingpu Tian, Huihui Cheng, Qiaomu Yan, Lai Li, Abbas Jamal, Zhongping Xu, Lin Xiang, Christopher A. Saski, Shuangxia Jin, Kaige Zhao, Xiuqun Liu, Longqing Chen
Format: Article
Language:English
Published: BMC 2020-08-01
Series:Genome Biology
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13059-020-02088-y
Description
Summary:Abstract Background Wintersweet (Chimonanthus praecox), an important ornamental plant, has evolved unique fragrant aroma and winter-flowering properties, which are critical for its successful sexual reproduction. However, the molecular mechanisms underlying these traits are largely unknown in this species. In addition, wintersweet is also a typical representative species of the magnoliids, where the phylogenetic position of which relative to eudicots and monocots has not been conclusively resolved. Results Here, we present a chromosome-level wintersweet genome assembly with a total size of 695.36 Mb and a draft genome assembly of Calycanthus chinensis. Phylogenetic analyses of 17 representative angiosperm genomes suggest that Magnoliids and eudicots are sister to monocots. Whole-genome duplication signatures reveal two major duplication events in the evolutionary history of the wintersweet genome, with an ancient one shared by Laurales, and a more recent one shared by the Calycantaceae. Whole-genome duplication and tandem duplication events have significant impacts on copy numbers of genes related to terpene and benzenoid/phenylpropanoid (the main floral scent volatiles) biosynthesis, which may contribute to the characteristic aroma formation. An integrative analysis combining cytology with genomic and transcriptomic data reveals biological characteristics of wintersweet, such as floral transition in spring, floral organ specification, low temperature-mediated floral bud break, early blooming in winter, and strong cold tolerance. Conclusions These findings provide insights into the evolutionary history of wintersweet and the relationships among the Magnoliids, monocots, and eudicots; the molecular basis underlying floral scent biosynthesis; and winter flowering, and highlight the utility of multi-omics data in deciphering important ornamental traits in wintersweet.
ISSN:1474-760X