Summary: | Abstract Background Medical fraternity are continuously pitching toward the development of novel mechanisms to combat the menace of cancer and to enhance the efficacy of prevailing molecules. During the drug development phase, majority of new molecular entity pose a threat due to hydrophobic nature, that compromises its bioavailability upon administration. These suboptimal accumulation and low drug loading hampers the clinical translation in cancer therapy. Main body of abstract Nanotechnology with valuable advantages create possibilities to accelerate the efficacy of treatment. Compared to matrix-based formulations, drug nanocrystals (NCs) with smaller size, high drug loading, high active targeting, extended circulation, great structural stability, tailored dissolution, and being carrier free have sparked a lot of interest in drug delivery. Many hydrophobic drugs were explored as drug NCs such as—doxorubicin, paclitaxel, campothecin and so on. However, premature leakage and clearance by mononuclear phagocytosis system lead to some great obstacles in the clinical applications of drug NCs. Conclusion In the recent years, strategies leading to surface modification are applied to improve uncontrolled drug release and targeting efficiency to tumor cells. The current review sheds light on various properties of drug nanocrystals, brief insights on its fabricating techniques, approaches for tumor targeting with NCs, and their applications in cancer imaging and therapeutics.
|