Summary: | Time-dependent shape-transferable soft robots are important for various intelligent applications in flexible electronics and bionics. Four-dimensional (4D) shape changes can offer versatile functional advantages during operations to soft robots that respond to external environmental stimuli, including heat, pH, light, electric, or pneumatic triggers. This review investigates the current advances in multiscale soft robots that can display 4D shape transformations. This review first focuses on material selection to demonstrate 4D origami-driven shape transformations. Second, this review investigates versatile fabrication strategies to form the 4D mechanical structures of soft robots. Third, this review surveys the folding, rolling, bending, and wrinkling mechanisms of soft robots during operation. Fourth, this review highlights the diverse applications of 4D origami-driven soft robots in actuators, sensors, and bionics. Finally, perspectives on future directions and challenges in the development of intelligent soft robots in real operational environments are discussed.
|