Reidemeister classes for coincidences between sections of a fiber bundle

Let $s_0,f_0$ be two sections of a fiber bundle $q: E\to B$ and the coincidence set $\Gamma(s_0,f_0)\neq \emptyset$. We consider the following question:  Is there $s_0\simeq_B s_1$ (by the homotopies which cover the constant homotopy $\overline{I}_B$ on the basic space) such that $\Gamma(s_1, f_0)=\...

Full description

Bibliographic Details
Main Authors: Dirceu Penteado, Thales Fernando Vilamaior Paiva
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2019-05-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/37223
_version_ 1797633493245624320
author Dirceu Penteado
Thales Fernando Vilamaior Paiva
author_facet Dirceu Penteado
Thales Fernando Vilamaior Paiva
author_sort Dirceu Penteado
collection DOAJ
description Let $s_0,f_0$ be two sections of a fiber bundle $q: E\to B$ and the coincidence set $\Gamma(s_0,f_0)\neq \emptyset$. We consider the following question:  Is there $s_0\simeq_B s_1$ (by the homotopies which cover the constant homotopy $\overline{I}_B$ on the basic space) such that $\Gamma(s_1, f_0)=\emptyset$? If $b_0\in \Gamma(s_0,f_0)$ and $F_0=q^{-1}(b_0)$ is the typical fiber, in this context we can use the homotopy lifting extension propriety of the fibration $q$ to obtain homotopies over $B$. When we make this and the basic point are fixed we can use the elements $s_0(\beta), f_0(\beta^{-1})$ where $\beta \in\pi_1(B,b_0)$ and the elements $\gamma\in \pi_1(F_0,e_0)$. So we will introduce the algebraic classes of Reidemeister relative to the subgroup $\pi_1(F_0,e_0)$. When the basic points are not fixed we need to consider the classes $[\til{s}]_L$ of lifting of $s_0$ defined on the universal covering $\til{B}$ to $\til{E}$. The present work relates the lifting classes $[\til{s}]_L$ of $s_0$ and the algebraic relative Reidemeister classes $R_A(s_0,f_0; \pi_1(F_0,e_0).$
first_indexed 2024-03-11T11:54:47Z
format Article
id doaj.art-65334928599c4518870158662e4fcf22
institution Directory Open Access Journal
issn 0037-8712
2175-1188
language English
last_indexed 2024-03-11T11:54:47Z
publishDate 2019-05-01
publisher Sociedade Brasileira de Matemática
record_format Article
series Boletim da Sociedade Paranaense de Matemática
spelling doaj.art-65334928599c4518870158662e4fcf222023-11-08T20:07:15ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882019-05-0138610.5269/bspm.v38i6.37223Reidemeister classes for coincidences between sections of a fiber bundleDirceu Penteado0Thales Fernando Vilamaior Paiva1Universidade Federal de São Carlos Departamento de MatemáticaUniversidade Federal de Mato Grosso do Sul CPAqLet $s_0,f_0$ be two sections of a fiber bundle $q: E\to B$ and the coincidence set $\Gamma(s_0,f_0)\neq \emptyset$. We consider the following question:  Is there $s_0\simeq_B s_1$ (by the homotopies which cover the constant homotopy $\overline{I}_B$ on the basic space) such that $\Gamma(s_1, f_0)=\emptyset$? If $b_0\in \Gamma(s_0,f_0)$ and $F_0=q^{-1}(b_0)$ is the typical fiber, in this context we can use the homotopy lifting extension propriety of the fibration $q$ to obtain homotopies over $B$. When we make this and the basic point are fixed we can use the elements $s_0(\beta), f_0(\beta^{-1})$ where $\beta \in\pi_1(B,b_0)$ and the elements $\gamma\in \pi_1(F_0,e_0)$. So we will introduce the algebraic classes of Reidemeister relative to the subgroup $\pi_1(F_0,e_0)$. When the basic points are not fixed we need to consider the classes $[\til{s}]_L$ of lifting of $s_0$ defined on the universal covering $\til{B}$ to $\til{E}$. The present work relates the lifting classes $[\til{s}]_L$ of $s_0$ and the algebraic relative Reidemeister classes $R_A(s_0,f_0; \pi_1(F_0,e_0).$https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/37223Coincidence theoryReidemeister classesfiber bundle
spellingShingle Dirceu Penteado
Thales Fernando Vilamaior Paiva
Reidemeister classes for coincidences between sections of a fiber bundle
Boletim da Sociedade Paranaense de Matemática
Coincidence theory
Reidemeister classes
fiber bundle
title Reidemeister classes for coincidences between sections of a fiber bundle
title_full Reidemeister classes for coincidences between sections of a fiber bundle
title_fullStr Reidemeister classes for coincidences between sections of a fiber bundle
title_full_unstemmed Reidemeister classes for coincidences between sections of a fiber bundle
title_short Reidemeister classes for coincidences between sections of a fiber bundle
title_sort reidemeister classes for coincidences between sections of a fiber bundle
topic Coincidence theory
Reidemeister classes
fiber bundle
url https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/37223
work_keys_str_mv AT dirceupenteado reidemeisterclassesforcoincidencesbetweensectionsofafiberbundle
AT thalesfernandovilamaiorpaiva reidemeisterclassesforcoincidencesbetweensectionsofafiberbundle