Genetic structure of <it>Leptopilina boulardi </it>populations from different climatic zones of Iran

<p>Abstract</p> <p>Background</p> <p>The genetic structure of populations can be influenced by geographic isolation (including physical distance) and ecology. We examined these effects in <it>Leptopilina boulardi</it>, a parasitoid of <it>Drosophila &l...

Full description

Bibliographic Details
Main Authors: van Alphen Jacques JM, Seyahooei Majeed, Kraaijeveld Ken
Format: Article
Language:English
Published: BMC 2011-01-01
Series:BMC Ecology
Online Access:http://www.biomedcentral.com/1472-6785/11/4
_version_ 1811191135259852800
author van Alphen Jacques JM
Seyahooei Majeed
Kraaijeveld Ken
author_facet van Alphen Jacques JM
Seyahooei Majeed
Kraaijeveld Ken
author_sort van Alphen Jacques JM
collection DOAJ
description <p>Abstract</p> <p>Background</p> <p>The genetic structure of populations can be influenced by geographic isolation (including physical distance) and ecology. We examined these effects in <it>Leptopilina boulardi</it>, a parasitoid of <it>Drosophila </it>of African origin and widely distributed over temperate and (sub) tropical climates.</p> <p>Results</p> <p>We sampled 11 populations of <it>L. boulardi </it>from five climatic zones in Iran and measured genetic differentiation at nuclear (Amplified Fragment Length Polymorphism; AFLP) and mitochondrial (Cytochrome Oxidase I; COI) loci. An Analysis of Molecular Variance (AMOVA) for the AFLP data revealed that 67.45% of variation resided between populations. No significant variation was observed between climatic zones. However, a significant difference was detected between populations from the central (dry) regions and those from the wetter north, which are separated by desert. A similarly clear cut genetic differentiation between populations from the central part of Iran and those from the north was observed by UPGMA cluster analysis and Principal Coordinates Analysis (PCO). Both UPGMA and PCO further separated two populations from the very humid western Caspian Sea coast (zone 3) from other northern populations from the temperate Caspian Sea coastal plain (zone 2), which are connected by forest. One population (Nour) was genetically intermediate between these two zones, indicating some gene flow between these two groups of populations. In all analyses a mountain population, Sorkhabad was found to be genetically identical to those from the nearby coastal plain (zone 2), which indicates high gene flow between these populations over a short geographical distance. One population from the Caspian coast (Astaneh) was genetically highly diverged from all other populations. A partial Mantel test showed a highly significant positive correlation between genetic and geographic distances, as well as separation by the deserts of central Iran. The COI sequences were highly conserved among all populations.</p> <p>Conclusion</p> <p>The Iranian populations of <it>L. boulardi </it>showed clear genetic structure in AFLP profiles, but not in COI sequence data. The transfer of fruits containing <it>Drosophila </it>larvae parasitized by <it>L. boulardi </it>appears to have caused some unexpected gene flow and changed the genetic composition of populations, particularly in urban areas. Nevertheless, our results suggest that climate, geographic distance and physical barriers may all have contributed to the formation of genetically distinct populations of <it>L. boulardi</it>. Inevitably, there will be overlap between the portions of variance explained by these variables. Disentangling the relative contributions of climate and geography to the genetic structure of this species will require additional sampling.</p>
first_indexed 2024-04-11T15:01:39Z
format Article
id doaj.art-653a2968e851471d855479996ad6e8c6
institution Directory Open Access Journal
issn 1472-6785
language English
last_indexed 2024-04-11T15:01:39Z
publishDate 2011-01-01
publisher BMC
record_format Article
series BMC Ecology
spelling doaj.art-653a2968e851471d855479996ad6e8c62022-12-22T04:16:57ZengBMCBMC Ecology1472-67852011-01-01111410.1186/1472-6785-11-4Genetic structure of <it>Leptopilina boulardi </it>populations from different climatic zones of Iranvan Alphen Jacques JMSeyahooei MajeedKraaijeveld Ken<p>Abstract</p> <p>Background</p> <p>The genetic structure of populations can be influenced by geographic isolation (including physical distance) and ecology. We examined these effects in <it>Leptopilina boulardi</it>, a parasitoid of <it>Drosophila </it>of African origin and widely distributed over temperate and (sub) tropical climates.</p> <p>Results</p> <p>We sampled 11 populations of <it>L. boulardi </it>from five climatic zones in Iran and measured genetic differentiation at nuclear (Amplified Fragment Length Polymorphism; AFLP) and mitochondrial (Cytochrome Oxidase I; COI) loci. An Analysis of Molecular Variance (AMOVA) for the AFLP data revealed that 67.45% of variation resided between populations. No significant variation was observed between climatic zones. However, a significant difference was detected between populations from the central (dry) regions and those from the wetter north, which are separated by desert. A similarly clear cut genetic differentiation between populations from the central part of Iran and those from the north was observed by UPGMA cluster analysis and Principal Coordinates Analysis (PCO). Both UPGMA and PCO further separated two populations from the very humid western Caspian Sea coast (zone 3) from other northern populations from the temperate Caspian Sea coastal plain (zone 2), which are connected by forest. One population (Nour) was genetically intermediate between these two zones, indicating some gene flow between these two groups of populations. In all analyses a mountain population, Sorkhabad was found to be genetically identical to those from the nearby coastal plain (zone 2), which indicates high gene flow between these populations over a short geographical distance. One population from the Caspian coast (Astaneh) was genetically highly diverged from all other populations. A partial Mantel test showed a highly significant positive correlation between genetic and geographic distances, as well as separation by the deserts of central Iran. The COI sequences were highly conserved among all populations.</p> <p>Conclusion</p> <p>The Iranian populations of <it>L. boulardi </it>showed clear genetic structure in AFLP profiles, but not in COI sequence data. The transfer of fruits containing <it>Drosophila </it>larvae parasitized by <it>L. boulardi </it>appears to have caused some unexpected gene flow and changed the genetic composition of populations, particularly in urban areas. Nevertheless, our results suggest that climate, geographic distance and physical barriers may all have contributed to the formation of genetically distinct populations of <it>L. boulardi</it>. Inevitably, there will be overlap between the portions of variance explained by these variables. Disentangling the relative contributions of climate and geography to the genetic structure of this species will require additional sampling.</p>http://www.biomedcentral.com/1472-6785/11/4
spellingShingle van Alphen Jacques JM
Seyahooei Majeed
Kraaijeveld Ken
Genetic structure of <it>Leptopilina boulardi </it>populations from different climatic zones of Iran
BMC Ecology
title Genetic structure of <it>Leptopilina boulardi </it>populations from different climatic zones of Iran
title_full Genetic structure of <it>Leptopilina boulardi </it>populations from different climatic zones of Iran
title_fullStr Genetic structure of <it>Leptopilina boulardi </it>populations from different climatic zones of Iran
title_full_unstemmed Genetic structure of <it>Leptopilina boulardi </it>populations from different climatic zones of Iran
title_short Genetic structure of <it>Leptopilina boulardi </it>populations from different climatic zones of Iran
title_sort genetic structure of it leptopilina boulardi it populations from different climatic zones of iran
url http://www.biomedcentral.com/1472-6785/11/4
work_keys_str_mv AT vanalphenjacquesjm geneticstructureofitleptopilinaboulardiitpopulationsfromdifferentclimaticzonesofiran
AT seyahooeimajeed geneticstructureofitleptopilinaboulardiitpopulationsfromdifferentclimaticzonesofiran
AT kraaijeveldken geneticstructureofitleptopilinaboulardiitpopulationsfromdifferentclimaticzonesofiran