Mixing assisted oxidative desulfurization using a synthesized catalyst of the activated carbon supported phosphotungstic acid: A process optimization study
Desulfurization technology is vital in the removal of sulfur compounds in diesel to attain clean fuels. In this research, the mixing assisted oxidative desulfurization (MAOD) in conjunction with a high shear mixer was used with the catalyst of the activated carbon supported phosphotungstic acid. Thi...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2022-10-01
|
Series: | South African Journal of Chemical Engineering |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S102691852200049X |
_version_ | 1828161156161732608 |
---|---|
author | Gerje Ronelle H. Barilla Charles Adrian W. Chen Martin Zechariah M. Valencia Nathaniel P. Dugos Angelo Earvin Sy Choi |
author_facet | Gerje Ronelle H. Barilla Charles Adrian W. Chen Martin Zechariah M. Valencia Nathaniel P. Dugos Angelo Earvin Sy Choi |
author_sort | Gerje Ronelle H. Barilla |
collection | DOAJ |
description | Desulfurization technology is vital in the removal of sulfur compounds in diesel to attain clean fuels. In this research, the mixing assisted oxidative desulfurization (MAOD) in conjunction with a high shear mixer was used with the catalyst of the activated carbon supported phosphotungstic acid. This study discusses the desulfurization of a simulated diesel, containing 2.3 wt% S of dibenzothiophene and benzothiophene in real fuel oil. The influences of mixing speed (8,000 rpm to 16,800 rpm), mixing time (30 min to 90 min), and mixing temperature (25°C to 65°C) were examined for the sulfur oxidation. A 2k full factorial design and a face-centered cube design were utilized for the screening and optimization studies, respectively, in the experimental runs. The analysis of variance was able to determine and generate a simplified quadratic model to predict the response in the MAOD process. The optimum variables for sulfur conversion were achieved at 88.5 min (mixing time), 16,800 rpm (mixing speed), and 63.28°C (mixing temperature). The confirmatory run resulted in percent oxidation of 62.37 % and validated the generated model. Moreover, the fundamental properties of diesel oil were analyzed for comparison prior to and after the MAOD method. The results revealed the retention of essential properties of the simulated diesel oil even after the MAOD treatment step. Thus, the MAOD process has successfully preserved the properties of diesel oil even after its treatment process. This indicates a promising result of the MAOD process favorable for its future applications. |
first_indexed | 2024-04-12T00:34:03Z |
format | Article |
id | doaj.art-653abfac69ba4c14a63aa0e697689a82 |
institution | Directory Open Access Journal |
issn | 1026-9185 |
language | English |
last_indexed | 2024-04-12T00:34:03Z |
publishDate | 2022-10-01 |
publisher | Elsevier |
record_format | Article |
series | South African Journal of Chemical Engineering |
spelling | doaj.art-653abfac69ba4c14a63aa0e697689a822022-12-22T03:55:13ZengElsevierSouth African Journal of Chemical Engineering1026-91852022-10-01426171Mixing assisted oxidative desulfurization using a synthesized catalyst of the activated carbon supported phosphotungstic acid: A process optimization studyGerje Ronelle H. Barilla0Charles Adrian W. Chen1Martin Zechariah M. Valencia2Nathaniel P. Dugos3Angelo Earvin Sy Choi4Department of Chemical Engineering, De La Salle University, 2401 Taft Avenue, Malate, Manila 0922, PhilippinesDepartment of Chemical Engineering, De La Salle University, 2401 Taft Avenue, Malate, Manila 0922, PhilippinesDepartment of Chemical Engineering, De La Salle University, 2401 Taft Avenue, Malate, Manila 0922, PhilippinesDepartment of Chemical Engineering, De La Salle University, 2401 Taft Avenue, Malate, Manila 0922, PhilippinesCorresponding author.; Department of Chemical Engineering, De La Salle University, 2401 Taft Avenue, Malate, Manila 0922, PhilippinesDesulfurization technology is vital in the removal of sulfur compounds in diesel to attain clean fuels. In this research, the mixing assisted oxidative desulfurization (MAOD) in conjunction with a high shear mixer was used with the catalyst of the activated carbon supported phosphotungstic acid. This study discusses the desulfurization of a simulated diesel, containing 2.3 wt% S of dibenzothiophene and benzothiophene in real fuel oil. The influences of mixing speed (8,000 rpm to 16,800 rpm), mixing time (30 min to 90 min), and mixing temperature (25°C to 65°C) were examined for the sulfur oxidation. A 2k full factorial design and a face-centered cube design were utilized for the screening and optimization studies, respectively, in the experimental runs. The analysis of variance was able to determine and generate a simplified quadratic model to predict the response in the MAOD process. The optimum variables for sulfur conversion were achieved at 88.5 min (mixing time), 16,800 rpm (mixing speed), and 63.28°C (mixing temperature). The confirmatory run resulted in percent oxidation of 62.37 % and validated the generated model. Moreover, the fundamental properties of diesel oil were analyzed for comparison prior to and after the MAOD method. The results revealed the retention of essential properties of the simulated diesel oil even after the MAOD treatment step. Thus, the MAOD process has successfully preserved the properties of diesel oil even after its treatment process. This indicates a promising result of the MAOD process favorable for its future applications.http://www.sciencedirect.com/science/article/pii/S102691852200049XActivated carbonDiesel oilImpregnation methodMixing assisted oxidative desulfurizationOptimization analysisPhosphotungstic acid |
spellingShingle | Gerje Ronelle H. Barilla Charles Adrian W. Chen Martin Zechariah M. Valencia Nathaniel P. Dugos Angelo Earvin Sy Choi Mixing assisted oxidative desulfurization using a synthesized catalyst of the activated carbon supported phosphotungstic acid: A process optimization study South African Journal of Chemical Engineering Activated carbon Diesel oil Impregnation method Mixing assisted oxidative desulfurization Optimization analysis Phosphotungstic acid |
title | Mixing assisted oxidative desulfurization using a synthesized catalyst of the activated carbon supported phosphotungstic acid: A process optimization study |
title_full | Mixing assisted oxidative desulfurization using a synthesized catalyst of the activated carbon supported phosphotungstic acid: A process optimization study |
title_fullStr | Mixing assisted oxidative desulfurization using a synthesized catalyst of the activated carbon supported phosphotungstic acid: A process optimization study |
title_full_unstemmed | Mixing assisted oxidative desulfurization using a synthesized catalyst of the activated carbon supported phosphotungstic acid: A process optimization study |
title_short | Mixing assisted oxidative desulfurization using a synthesized catalyst of the activated carbon supported phosphotungstic acid: A process optimization study |
title_sort | mixing assisted oxidative desulfurization using a synthesized catalyst of the activated carbon supported phosphotungstic acid a process optimization study |
topic | Activated carbon Diesel oil Impregnation method Mixing assisted oxidative desulfurization Optimization analysis Phosphotungstic acid |
url | http://www.sciencedirect.com/science/article/pii/S102691852200049X |
work_keys_str_mv | AT gerjeronellehbarilla mixingassistedoxidativedesulfurizationusingasynthesizedcatalystoftheactivatedcarbonsupportedphosphotungsticacidaprocessoptimizationstudy AT charlesadrianwchen mixingassistedoxidativedesulfurizationusingasynthesizedcatalystoftheactivatedcarbonsupportedphosphotungsticacidaprocessoptimizationstudy AT martinzechariahmvalencia mixingassistedoxidativedesulfurizationusingasynthesizedcatalystoftheactivatedcarbonsupportedphosphotungsticacidaprocessoptimizationstudy AT nathanielpdugos mixingassistedoxidativedesulfurizationusingasynthesizedcatalystoftheactivatedcarbonsupportedphosphotungsticacidaprocessoptimizationstudy AT angeloearvinsychoi mixingassistedoxidativedesulfurizationusingasynthesizedcatalystoftheactivatedcarbonsupportedphosphotungsticacidaprocessoptimizationstudy |