Machine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable fuel productivity

Growth limitation caused by mutual shading and the high harvest cost hamper algal biofuel production. Here, the authors overcome these two problems by designing a semi-continuous algal cultivation system and an aggregation-based sedimentation strategy to achieve high levels production of biomass and...

Full description

Bibliographic Details
Main Authors: Bin Long, Bart Fischer, Yining Zeng, Zoe Amerigian, Qiang Li, Henry Bryant, Man Li, Susie Y. Dai, Joshua S. Yuan
Format: Article
Language:English
Published: Nature Portfolio 2022-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-021-27665-y
_version_ 1819280397815513088
author Bin Long
Bart Fischer
Yining Zeng
Zoe Amerigian
Qiang Li
Henry Bryant
Man Li
Susie Y. Dai
Joshua S. Yuan
author_facet Bin Long
Bart Fischer
Yining Zeng
Zoe Amerigian
Qiang Li
Henry Bryant
Man Li
Susie Y. Dai
Joshua S. Yuan
author_sort Bin Long
collection DOAJ
description Growth limitation caused by mutual shading and the high harvest cost hamper algal biofuel production. Here, the authors overcome these two problems by designing a semi-continuous algal cultivation system and an aggregation-based sedimentation strategy to achieve high levels production of biomass and limonene.
first_indexed 2024-12-24T00:43:09Z
format Article
id doaj.art-6546084f95b845f5957390adaf3c8912
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-12-24T00:43:09Z
publishDate 2022-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-6546084f95b845f5957390adaf3c89122022-12-21T17:23:53ZengNature PortfolioNature Communications2041-17232022-01-0113111110.1038/s41467-021-27665-yMachine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable fuel productivityBin Long0Bart Fischer1Yining Zeng2Zoe Amerigian3Qiang Li4Henry Bryant5Man Li6Susie Y. Dai7Joshua S. Yuan8Department of Plant Pathology and Microbiology, Texas A&M UniversityDepartment of Agricultural Economics, Texas A&M UniversityRenewable Resources and Enabling Sciences Center, National Renewable Energy LaboratoryDepartment of Plant Pathology and Microbiology, Texas A&M UniversityDepartment of Plant Pathology and Microbiology, Texas A&M UniversityDepartment of Agricultural Economics, Texas A&M UniversityDepartment of Plant Pathology and Microbiology, Texas A&M UniversityDepartment of Plant Pathology and Microbiology, Texas A&M UniversityDepartment of Plant Pathology and Microbiology, Texas A&M UniversityGrowth limitation caused by mutual shading and the high harvest cost hamper algal biofuel production. Here, the authors overcome these two problems by designing a semi-continuous algal cultivation system and an aggregation-based sedimentation strategy to achieve high levels production of biomass and limonene.https://doi.org/10.1038/s41467-021-27665-y
spellingShingle Bin Long
Bart Fischer
Yining Zeng
Zoe Amerigian
Qiang Li
Henry Bryant
Man Li
Susie Y. Dai
Joshua S. Yuan
Machine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable fuel productivity
Nature Communications
title Machine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable fuel productivity
title_full Machine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable fuel productivity
title_fullStr Machine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable fuel productivity
title_full_unstemmed Machine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable fuel productivity
title_short Machine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable fuel productivity
title_sort machine learning informed and synthetic biology enabled semi continuous algal cultivation to unleash renewable fuel productivity
url https://doi.org/10.1038/s41467-021-27665-y
work_keys_str_mv AT binlong machinelearninginformedandsyntheticbiologyenabledsemicontinuousalgalcultivationtounleashrenewablefuelproductivity
AT bartfischer machinelearninginformedandsyntheticbiologyenabledsemicontinuousalgalcultivationtounleashrenewablefuelproductivity
AT yiningzeng machinelearninginformedandsyntheticbiologyenabledsemicontinuousalgalcultivationtounleashrenewablefuelproductivity
AT zoeamerigian machinelearninginformedandsyntheticbiologyenabledsemicontinuousalgalcultivationtounleashrenewablefuelproductivity
AT qiangli machinelearninginformedandsyntheticbiologyenabledsemicontinuousalgalcultivationtounleashrenewablefuelproductivity
AT henrybryant machinelearninginformedandsyntheticbiologyenabledsemicontinuousalgalcultivationtounleashrenewablefuelproductivity
AT manli machinelearninginformedandsyntheticbiologyenabledsemicontinuousalgalcultivationtounleashrenewablefuelproductivity
AT susieydai machinelearninginformedandsyntheticbiologyenabledsemicontinuousalgalcultivationtounleashrenewablefuelproductivity
AT joshuasyuan machinelearninginformedandsyntheticbiologyenabledsemicontinuousalgalcultivationtounleashrenewablefuelproductivity