Mechanical Characterization of Hybrid Nano-Filled Glass/Epoxy Composites

Fiber-reinforced polymer (FRP) composite materials are very versatile in use because of their high specific stiffness and high specific strength characteristics. The main limitation of this material is its brittle nature (mainly due to the low stiffness and low fracture toughness of resin) that lead...

Full description

Bibliographic Details
Main Author: Ali A. Rajhi
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/14/22/4852
Description
Summary:Fiber-reinforced polymer (FRP) composite materials are very versatile in use because of their high specific stiffness and high specific strength characteristics. The main limitation of this material is its brittle nature (mainly due to the low stiffness and low fracture toughness of resin) that leads to reduced properties that are matrix dominated, including impact strength, compressive strength, in-plane shear, fracture toughness, and interlaminar strength. One method of overcoming these limitations is using nanoparticles as fillers in an FRP composite. Thereby, this present paper is focused on studying the effect of nanofillers added to glass/epoxy composite materials on mechanical behavior. Multiwall carbon nanotubes (MWCNTs), nano-silica (NS), and nano-iron oxide (NFe) are the nanofillers selected, as they can react with the resin system in the present-case epoxy to contribute a significant improvement to the polymer cross-linking web. Glass/epoxy composites are made with four layers of unidirectional E-glass fiber modified by nanoparticles with four different weight percentages (0.1%, 0.2%, 0.5%, and 1.0%). For reference, a sample without nanoparticles was made. The mechanical characterizations of these samples were completed under tensile, compressive, flexural, and impact loading. To understand the failure mechanism, an SEM analysis was also completed on the fractured surface.
ISSN:2073-4360