Synthesis of Nitrogen and Phosphorus/Sulfur Co-Doped Carbon Xerogels for the Efficient Electrocatalytic Reduction of p-Nitrophenol

Carbon xerogels co-doped with nitrogen (N) and phosphorus (P) or sulfur (S) were synthesized and employed as catalysts for the electrocatalytic reduction of p-nitrophenol (p-NP). The materials were prepared by first synthesizing N-doped carbon xerogels (NDCX) via the pyrolysis of organic gels, and t...

Full description

Bibliographic Details
Main Authors: Chaolong Wang, Dengxia Zhu, Huiting Bi, Zheng Zhang, Junjiang Zhu
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/24/3/2432
Description
Summary:Carbon xerogels co-doped with nitrogen (N) and phosphorus (P) or sulfur (S) were synthesized and employed as catalysts for the electrocatalytic reduction of p-nitrophenol (p-NP). The materials were prepared by first synthesizing N-doped carbon xerogels (NDCX) via the pyrolysis of organic gels, and then introducing P or S atoms to the NDCX by a vapor deposition method. The materials were characterized by various measurements including X-ray diffraction, N<sub>2</sub> physisorption, Transmission electron microscopy, Fourier Infrared spectrometer, and X-ray photoelectron spectra, which showed that N atoms were successfully doped to the carbon xerogels, and the co-doping of P or S atoms affected the existing status of N atoms. Cyclic voltammetry (CV) scanning manifested that the N and P co-doped materials, i.e., P-NDCX-1.0, was the most suitable catalyst for the reaction, showing an overpotential of −0.569 V (vs. Ag/AgCl) and a peak slop of 695.90 μA/V. The material was also stable in the reaction and only a 14 mV shift in the reduction peak overpotential was observed after running for 100 cycles.
ISSN:1661-6596
1422-0067