Hybrid Active–Passive Reconfigurable Intelligent Surface for Cooperative Transmission Systems

Reconfigurable intelligent surfaces (RISs) are acknowledged as one of the key technologies for the next-generation communication systems due to their low cost, high-energy efficiency, and the ability to intelligently control the wireless propagation environment. In this paper, we present a hybrid ac...

Full description

Bibliographic Details
Main Authors: Wenhe Wang, Kang Song
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/14/1/231
Description
Summary:Reconfigurable intelligent surfaces (RISs) are acknowledged as one of the key technologies for the next-generation communication systems due to their low cost, high-energy efficiency, and the ability to intelligently control the wireless propagation environment. In this paper, we present a hybrid active–passive reconfigurable intelligent surface (HAPR) for cooperative transmission system, where HAPR can intelligently change its operating mode according to the channel environment, eliminating the “multiplicative fading” effect of traditional passive RIS (P-RIS) and higher power consumption of active RIS (A-RIS), and combining the advantages of both to effectively improve the system performance. First, we investigate the ideal reflection coefficient of RIS reflecting elements (REs) under the condition of a limited power budget. Using the compound Simpson formula, the closed-form approximation expression for the system outage probability (OP) has been derived. Finally, Monte Carlo simulation is used to confirm the accuracy of the expression. The simulation results demonstrate that HAPR has a better performance than both A-RIS and P-RIS, which can achieve a lower OP.
ISSN:2076-3417