Metal Mobilization From CO2 Storage Cap-Rocks: Experimental Reactions With Pure CO2 or CO2 SO2 NO

CO2 geological storage will be needed as part of the transition to lower greenhouse gas emissions. During CO2 storage, the mobilization of metals from minerals to formation water via CO2 water rock reactions may be a concern for water quality. The sources, behavior, and fate of metals, however, are...

Full description

Bibliographic Details
Main Authors: J. K. Pearce, G. W. Dawson, G. Southam, D. Paterson, D. Kirste, S. D. Golding
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-07-01
Series:Frontiers in Energy Research
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fenrg.2022.873813/full
_version_ 1811224532393918464
author J. K. Pearce
J. K. Pearce
G. W. Dawson
G. Southam
D. Paterson
D. Kirste
S. D. Golding
author_facet J. K. Pearce
J. K. Pearce
G. W. Dawson
G. Southam
D. Paterson
D. Kirste
S. D. Golding
author_sort J. K. Pearce
collection DOAJ
description CO2 geological storage will be needed as part of the transition to lower greenhouse gas emissions. During CO2 storage, the mobilization of metals from minerals to formation water via CO2 water rock reactions may be a concern for water quality. The sources, behavior, and fate of metals, however, are not well understood. Metals in minerals of calcite cemented sandstone, feldspar-rich sandstone, and ironstone seal drill cores from a target storage site were characterized. The cores were reacted with low-salinity water and pure supercritical CO2 or impure CO2 with SO2 and nitric oxide (NO), under reservoir conditions. Calcite cemented core underwent calcite dissolution with chlorite, plagioclase, and sulfide alteration. The highest concentrations of calcium and manganese were released in the reaction of calcite cemented sandstone seal, with the lowest mobilized arsenic concentration. Pure CO2 reaction of the feldspar-rich sandstone seal resulted in calcite dissolution, with plagioclase, chlorite, kaolinite, illite, and sulfides corroded. Impure CO2 reaction of the feldspar-rich sandstone led to additional corrosion of apatite, pyrite, and sphalerite cements. Generally, dissolved iron, lead, zinc, and arsenic were released and then re-precipitated in oxide minerals or adsorbed. Calcium, manganese, and strontium were released primarily from calcite cement dissolution. Plagioclase corrosion was a second source of dissolved strontium, and chlorite dissolution a second source of manganese. Although sulfides contained higher concentrations of metals, the higher reactivity of carbonates meant that the latter were the main sources contributing to dissolved metal concentrations. The mineral content of the seal cores, and the injected gas mixture, had an impact on the type and concentration of metals released. The ubiquitous presence of carbonate minerals means that this study is applicable to understanding the potential risk factors for water quality changes, and the mobilization and fate of environmentally regulated metals, in both CO2 storage complexes and overlying drinking water aquifers worldwide.
first_indexed 2024-04-12T08:49:14Z
format Article
id doaj.art-6558895f7e4543f69bf0da524a4490ae
institution Directory Open Access Journal
issn 2296-598X
language English
last_indexed 2024-04-12T08:49:14Z
publishDate 2022-07-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Energy Research
spelling doaj.art-6558895f7e4543f69bf0da524a4490ae2022-12-22T03:39:36ZengFrontiers Media S.A.Frontiers in Energy Research2296-598X2022-07-011010.3389/fenrg.2022.873813873813Metal Mobilization From CO2 Storage Cap-Rocks: Experimental Reactions With Pure CO2 or CO2 SO2 NOJ. K. Pearce0J. K. Pearce1G. W. Dawson2G. Southam3D. Paterson4D. Kirste5S. D. Golding6UQ Centre for Natural Gas, University of Queensland, Brisbane, QLD, AustraliaSchool of Earth and Environmental Sciences, University of Queensland, Brisbane, QLD, AustraliaSchool of Earth and Environmental Sciences, University of Queensland, Brisbane, QLD, AustraliaSchool of Earth and Environmental Sciences, University of Queensland, Brisbane, QLD, AustraliaAustralian Synchrotron, ANSTO, Clayton, VIC, AustraliaDepartment of Earth Sciences, Simon Fraser University, Burnaby, BC, CanadaSchool of Earth and Environmental Sciences, University of Queensland, Brisbane, QLD, AustraliaCO2 geological storage will be needed as part of the transition to lower greenhouse gas emissions. During CO2 storage, the mobilization of metals from minerals to formation water via CO2 water rock reactions may be a concern for water quality. The sources, behavior, and fate of metals, however, are not well understood. Metals in minerals of calcite cemented sandstone, feldspar-rich sandstone, and ironstone seal drill cores from a target storage site were characterized. The cores were reacted with low-salinity water and pure supercritical CO2 or impure CO2 with SO2 and nitric oxide (NO), under reservoir conditions. Calcite cemented core underwent calcite dissolution with chlorite, plagioclase, and sulfide alteration. The highest concentrations of calcium and manganese were released in the reaction of calcite cemented sandstone seal, with the lowest mobilized arsenic concentration. Pure CO2 reaction of the feldspar-rich sandstone seal resulted in calcite dissolution, with plagioclase, chlorite, kaolinite, illite, and sulfides corroded. Impure CO2 reaction of the feldspar-rich sandstone led to additional corrosion of apatite, pyrite, and sphalerite cements. Generally, dissolved iron, lead, zinc, and arsenic were released and then re-precipitated in oxide minerals or adsorbed. Calcium, manganese, and strontium were released primarily from calcite cement dissolution. Plagioclase corrosion was a second source of dissolved strontium, and chlorite dissolution a second source of manganese. Although sulfides contained higher concentrations of metals, the higher reactivity of carbonates meant that the latter were the main sources contributing to dissolved metal concentrations. The mineral content of the seal cores, and the injected gas mixture, had an impact on the type and concentration of metals released. The ubiquitous presence of carbonate minerals means that this study is applicable to understanding the potential risk factors for water quality changes, and the mobilization and fate of environmentally regulated metals, in both CO2 storage complexes and overlying drinking water aquifers worldwide.https://www.frontiersin.org/articles/10.3389/fenrg.2022.873813/fullSurat BasinEvergreen Formationsealsimpure CO2CO2 geological storage
spellingShingle J. K. Pearce
J. K. Pearce
G. W. Dawson
G. Southam
D. Paterson
D. Kirste
S. D. Golding
Metal Mobilization From CO2 Storage Cap-Rocks: Experimental Reactions With Pure CO2 or CO2 SO2 NO
Frontiers in Energy Research
Surat Basin
Evergreen Formation
seals
impure CO2
CO2 geological storage
title Metal Mobilization From CO2 Storage Cap-Rocks: Experimental Reactions With Pure CO2 or CO2 SO2 NO
title_full Metal Mobilization From CO2 Storage Cap-Rocks: Experimental Reactions With Pure CO2 or CO2 SO2 NO
title_fullStr Metal Mobilization From CO2 Storage Cap-Rocks: Experimental Reactions With Pure CO2 or CO2 SO2 NO
title_full_unstemmed Metal Mobilization From CO2 Storage Cap-Rocks: Experimental Reactions With Pure CO2 or CO2 SO2 NO
title_short Metal Mobilization From CO2 Storage Cap-Rocks: Experimental Reactions With Pure CO2 or CO2 SO2 NO
title_sort metal mobilization from co2 storage cap rocks experimental reactions with pure co2 or co2 so2 no
topic Surat Basin
Evergreen Formation
seals
impure CO2
CO2 geological storage
url https://www.frontiersin.org/articles/10.3389/fenrg.2022.873813/full
work_keys_str_mv AT jkpearce metalmobilizationfromco2storagecaprocksexperimentalreactionswithpureco2orco2so2no
AT jkpearce metalmobilizationfromco2storagecaprocksexperimentalreactionswithpureco2orco2so2no
AT gwdawson metalmobilizationfromco2storagecaprocksexperimentalreactionswithpureco2orco2so2no
AT gsoutham metalmobilizationfromco2storagecaprocksexperimentalreactionswithpureco2orco2so2no
AT dpaterson metalmobilizationfromco2storagecaprocksexperimentalreactionswithpureco2orco2so2no
AT dkirste metalmobilizationfromco2storagecaprocksexperimentalreactionswithpureco2orco2so2no
AT sdgolding metalmobilizationfromco2storagecaprocksexperimentalreactionswithpureco2orco2so2no