δ-Catenin Participates in EGF/AKT/p21<sup>Waf</sup> Signaling and Induces Prostate Cancer Cell Proliferation and Invasion

Prostate cancer (PCa) is the second most leading cause of death in males. Our previous studies have demonstrated that δ-catenin plays an important role in prostate cancer progression. However, the molecular mechanism underlying the regulation of δ-catenin has not been fully explored yet. In the pres...

Full description

Bibliographic Details
Main Authors: Yingjie Shen, Hyoung Jae Lee, Rui Zhou, Hangun Kim, Gen Chen, Young-Chang Cho, Kwonseop Kim
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/22/10/5306
Description
Summary:Prostate cancer (PCa) is the second most leading cause of death in males. Our previous studies have demonstrated that δ-catenin plays an important role in prostate cancer progression. However, the molecular mechanism underlying the regulation of δ-catenin has not been fully explored yet. In the present study, we found that δ-catenin could induce phosphorylation of p21<sup>Waf</sup> and stabilize p21 in the cytoplasm, thus blocking its nuclear accumulation for the first time. We also found that δ-catenin could regulate the interaction between AKT and p21, leading to phosphorylation of p21 at Thr-145 residue. Finally, EGF was found to be a key factor upstream of AKT/δ-catenin/p21 for promoting proliferation and metastasis in prostate cancer. Our findings provide new insights into molecular controls of EGF and the development of potential therapeutics targeting δ-catenin to control prostate cancer progression.
ISSN:1661-6596
1422-0067