Association between Exosomal miRNAs and Coronary Artery Disease by Next-Generation Sequencing

Background: Among various bio-informative molecules transferred by exosomes between cells, micro RNAs (miRNAs), which remain remarkably stable even after freeze-and-thaw cycles, are excellent candidates for potential biomarkers for coronary artery disease (CAD). Methods: Blood samples were collected...

Full description

Bibliographic Details
Main Authors: Sheng-Nan Chang, Jien-Jiun Chen, Jo-Hsuan Wu, Yao-Te Chung, Jin-Wun Chen, Chu-Hsuan Chiu, Chia-Ju Liu, Meng-Tsun Liu, Yi-Cheng Chang, Chin Li, Jou-Wei Lin, Juey-Jen Hwang, Wen-Pin Lien
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/11/1/98
Description
Summary:Background: Among various bio-informative molecules transferred by exosomes between cells, micro RNAs (miRNAs), which remain remarkably stable even after freeze-and-thaw cycles, are excellent candidates for potential biomarkers for coronary artery disease (CAD). Methods: Blood samples were collected from the coronary arteries of 214 patients diagnosed with three-vessel CAD and 140 without CAD. After precipitation extraction, the amounts of exosomes were found to decrease with increased age and three-vessel CAD. Next-generation sequencing was performed to further explore the possible relationship between exosomal miRNAs and CAD. Results: Eight exosomal miRNAs showed altered expression associated with CAD. The up-regulated miRNAs in CAD were miRNA-382-3p, miRNA-432-5p, miRNA-200a-3p, and miRNA-3613-3p. The down-regulated miRNAs were miRNA-125a-5p, miRNA-185-5p, miRNA-151a-3p, and miRNA-328-3p. Conclusion: We successfully demonstrated particular exosomal miRNAs that may serve as future biomarkers for CAD.
ISSN:2073-4409