Beam Steering 3D Printed Dielectric Lens Antennas for Millimeter-Wave and 5G Applications
Two types of cost-efficient antennas based on dielectric gradient index dielectric lens have been designed for 5G applications at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>28</mn><...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-08-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/23/15/6961 |
_version_ | 1797585968077733888 |
---|---|
author | Asrin Piroutiniya Mohamad Hosein Rasekhmanesh José Luis Masa-Campos Javier López-Hernández Eduardo García-Marín Adrián Tamayo-Domínguez Pablo Sánchez-Olivares Jorge A. Ruiz-Cruz |
author_facet | Asrin Piroutiniya Mohamad Hosein Rasekhmanesh José Luis Masa-Campos Javier López-Hernández Eduardo García-Marín Adrián Tamayo-Domínguez Pablo Sánchez-Olivares Jorge A. Ruiz-Cruz |
author_sort | Asrin Piroutiniya |
collection | DOAJ |
description | Two types of cost-efficient antennas based on dielectric gradient index dielectric lens have been designed for 5G applications at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>28</mn><mo> </mo><mi mathvariant="normal">G</mi><mi mathvariant="normal">H</mi><mi mathvariant="normal">z</mi></mrow></semantics></math></inline-formula>. The first is a linearly polarized flat lens antenna (LP-FLA) for terrestrial 5G communications. The second is a novel circularly polarized stepped lens antenna (CP-SLA) for 5G satellite services. An efficient design method is presented to optimize and conform the lens topology to the radiation pattern coming from the antenna feeder. The LP-FLA is fed by a traditional linearly polarized pyramidal horn antenna (PHA). The CP-SLA is fed by an open-ended bow-tie waveguide cavity (BCA) antenna. This cavity feeder (BCA), using cross-sections with bow-tie shapes, allows having circular polarization at the desired frequency bandwidth. The two types of presented antennas have been manufactured in order to verify their performance by an easy, low-cost, three-dimensional (3D) printing technique based on stereolithography. The peak realized gain value for the flat (LP-FLA) and stepped (CP-SLA) lens antennas have been increased at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>28</mn><mo> </mo><mi mathvariant="normal">G</mi><mi mathvariant="normal">H</mi><mi mathvariant="normal">z</mi></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>25.2</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>24.8</mn><mo> </mo><mi mathvariant="normal">d</mi><mi mathvariant="normal">B</mi><mi mathvariant="normal">i</mi></mrow></semantics></math></inline-formula>, respectively, by disposing the lens structures at the appropriated distance from the feeders. Likewise, using an array of horns (PHA) or open-ended bow-tie waveguide cavity (BCA) antenna feeders, it is possible to obtain a maximum steering angle range of 20° and 35°, for a directivity over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>15</mn><mo> </mo><mi mathvariant="normal">d</mi><mi mathvariant="normal">B</mi><mi mathvariant="normal">i</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>10</mn><mo> </mo><mi mathvariant="normal">d</mi><mi mathvariant="normal">B</mi><mi mathvariant="normal">i</mi></mrow></semantics></math></inline-formula>, in the planar and stepped lens antennas, respectively. |
first_indexed | 2024-03-11T00:16:28Z |
format | Article |
id | doaj.art-6570ba07cfcd4ca78ea0d8d94d5d5be8 |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-11T00:16:28Z |
publishDate | 2023-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-6570ba07cfcd4ca78ea0d8d94d5d5be82023-11-18T23:36:49ZengMDPI AGSensors1424-82202023-08-012315696110.3390/s23156961Beam Steering 3D Printed Dielectric Lens Antennas for Millimeter-Wave and 5G ApplicationsAsrin Piroutiniya0Mohamad Hosein Rasekhmanesh1José Luis Masa-Campos2Javier López-Hernández3Eduardo García-Marín4Adrián Tamayo-Domínguez5Pablo Sánchez-Olivares6Jorge A. Ruiz-Cruz7Group of RadioFrequency: Circuits and Systems (RFCAS), Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, SpainGroup of RadioFrequency: Circuits and Systems (RFCAS), Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, SpainGroup of RadioFrequency: Circuits and Systems (RFCAS), Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, SpainGroup of RadioFrequency: Circuits and Systems (RFCAS), Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, SpainGroup of RadioFrequency: Circuits and Systems (RFCAS), Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, SpainCentro de Investigación en Procesado de la Información y Telecomunicaciones, Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid, 28040 Madrid, SpainCentro de Investigación en Procesado de la Información y Telecomunicaciones, Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid, 28040 Madrid, SpainGroup of RadioFrequency: Circuits and Systems (RFCAS), Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, SpainTwo types of cost-efficient antennas based on dielectric gradient index dielectric lens have been designed for 5G applications at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>28</mn><mo> </mo><mi mathvariant="normal">G</mi><mi mathvariant="normal">H</mi><mi mathvariant="normal">z</mi></mrow></semantics></math></inline-formula>. The first is a linearly polarized flat lens antenna (LP-FLA) for terrestrial 5G communications. The second is a novel circularly polarized stepped lens antenna (CP-SLA) for 5G satellite services. An efficient design method is presented to optimize and conform the lens topology to the radiation pattern coming from the antenna feeder. The LP-FLA is fed by a traditional linearly polarized pyramidal horn antenna (PHA). The CP-SLA is fed by an open-ended bow-tie waveguide cavity (BCA) antenna. This cavity feeder (BCA), using cross-sections with bow-tie shapes, allows having circular polarization at the desired frequency bandwidth. The two types of presented antennas have been manufactured in order to verify their performance by an easy, low-cost, three-dimensional (3D) printing technique based on stereolithography. The peak realized gain value for the flat (LP-FLA) and stepped (CP-SLA) lens antennas have been increased at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>28</mn><mo> </mo><mi mathvariant="normal">G</mi><mi mathvariant="normal">H</mi><mi mathvariant="normal">z</mi></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>25.2</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>24.8</mn><mo> </mo><mi mathvariant="normal">d</mi><mi mathvariant="normal">B</mi><mi mathvariant="normal">i</mi></mrow></semantics></math></inline-formula>, respectively, by disposing the lens structures at the appropriated distance from the feeders. Likewise, using an array of horns (PHA) or open-ended bow-tie waveguide cavity (BCA) antenna feeders, it is possible to obtain a maximum steering angle range of 20° and 35°, for a directivity over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>15</mn><mo> </mo><mi mathvariant="normal">d</mi><mi mathvariant="normal">B</mi><mi mathvariant="normal">i</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>10</mn><mo> </mo><mi mathvariant="normal">d</mi><mi mathvariant="normal">B</mi><mi mathvariant="normal">i</mi></mrow></semantics></math></inline-formula>, in the planar and stepped lens antennas, respectively.https://www.mdpi.com/1424-8220/23/15/6961lens antenna3D printingmanufacturing by stereolithographypencil beam5Ghorn antenna |
spellingShingle | Asrin Piroutiniya Mohamad Hosein Rasekhmanesh José Luis Masa-Campos Javier López-Hernández Eduardo García-Marín Adrián Tamayo-Domínguez Pablo Sánchez-Olivares Jorge A. Ruiz-Cruz Beam Steering 3D Printed Dielectric Lens Antennas for Millimeter-Wave and 5G Applications Sensors lens antenna 3D printing manufacturing by stereolithography pencil beam 5G horn antenna |
title | Beam Steering 3D Printed Dielectric Lens Antennas for Millimeter-Wave and 5G Applications |
title_full | Beam Steering 3D Printed Dielectric Lens Antennas for Millimeter-Wave and 5G Applications |
title_fullStr | Beam Steering 3D Printed Dielectric Lens Antennas for Millimeter-Wave and 5G Applications |
title_full_unstemmed | Beam Steering 3D Printed Dielectric Lens Antennas for Millimeter-Wave and 5G Applications |
title_short | Beam Steering 3D Printed Dielectric Lens Antennas for Millimeter-Wave and 5G Applications |
title_sort | beam steering 3d printed dielectric lens antennas for millimeter wave and 5g applications |
topic | lens antenna 3D printing manufacturing by stereolithography pencil beam 5G horn antenna |
url | https://www.mdpi.com/1424-8220/23/15/6961 |
work_keys_str_mv | AT asrinpiroutiniya beamsteering3dprinteddielectriclensantennasformillimeterwaveand5gapplications AT mohamadhoseinrasekhmanesh beamsteering3dprinteddielectriclensantennasformillimeterwaveand5gapplications AT joseluismasacampos beamsteering3dprinteddielectriclensantennasformillimeterwaveand5gapplications AT javierlopezhernandez beamsteering3dprinteddielectriclensantennasformillimeterwaveand5gapplications AT eduardogarciamarin beamsteering3dprinteddielectriclensantennasformillimeterwaveand5gapplications AT adriantamayodominguez beamsteering3dprinteddielectriclensantennasformillimeterwaveand5gapplications AT pablosanchezolivares beamsteering3dprinteddielectriclensantennasformillimeterwaveand5gapplications AT jorgearuizcruz beamsteering3dprinteddielectriclensantennasformillimeterwaveand5gapplications |