Beam Steering 3D Printed Dielectric Lens Antennas for Millimeter-Wave and 5G Applications

Two types of cost-efficient antennas based on dielectric gradient index dielectric lens have been designed for 5G applications at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>28</mn><...

Full description

Bibliographic Details
Main Authors: Asrin Piroutiniya, Mohamad Hosein Rasekhmanesh, José Luis Masa-Campos, Javier López-Hernández, Eduardo García-Marín, Adrián Tamayo-Domínguez, Pablo Sánchez-Olivares, Jorge A. Ruiz-Cruz
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/15/6961
_version_ 1797585968077733888
author Asrin Piroutiniya
Mohamad Hosein Rasekhmanesh
José Luis Masa-Campos
Javier López-Hernández
Eduardo García-Marín
Adrián Tamayo-Domínguez
Pablo Sánchez-Olivares
Jorge A. Ruiz-Cruz
author_facet Asrin Piroutiniya
Mohamad Hosein Rasekhmanesh
José Luis Masa-Campos
Javier López-Hernández
Eduardo García-Marín
Adrián Tamayo-Domínguez
Pablo Sánchez-Olivares
Jorge A. Ruiz-Cruz
author_sort Asrin Piroutiniya
collection DOAJ
description Two types of cost-efficient antennas based on dielectric gradient index dielectric lens have been designed for 5G applications at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>28</mn><mo> </mo><mi mathvariant="normal">G</mi><mi mathvariant="normal">H</mi><mi mathvariant="normal">z</mi></mrow></semantics></math></inline-formula>. The first is a linearly polarized flat lens antenna (LP-FLA) for terrestrial 5G communications. The second is a novel circularly polarized stepped lens antenna (CP-SLA) for 5G satellite services. An efficient design method is presented to optimize and conform the lens topology to the radiation pattern coming from the antenna feeder. The LP-FLA is fed by a traditional linearly polarized pyramidal horn antenna (PHA). The CP-SLA is fed by an open-ended bow-tie waveguide cavity (BCA) antenna. This cavity feeder (BCA), using cross-sections with bow-tie shapes, allows having circular polarization at the desired frequency bandwidth. The two types of presented antennas have been manufactured in order to verify their performance by an easy, low-cost, three-dimensional (3D) printing technique based on stereolithography. The peak realized gain value for the flat (LP-FLA) and stepped (CP-SLA) lens antennas have been increased at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>28</mn><mo> </mo><mi mathvariant="normal">G</mi><mi mathvariant="normal">H</mi><mi mathvariant="normal">z</mi></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>25.2</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>24.8</mn><mo> </mo><mi mathvariant="normal">d</mi><mi mathvariant="normal">B</mi><mi mathvariant="normal">i</mi></mrow></semantics></math></inline-formula>, respectively, by disposing the lens structures at the appropriated distance from the feeders. Likewise, using an array of horns (PHA) or open-ended bow-tie waveguide cavity (BCA) antenna feeders, it is possible to obtain a maximum steering angle range of 20° and 35°, for a directivity over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>15</mn><mo> </mo><mi mathvariant="normal">d</mi><mi mathvariant="normal">B</mi><mi mathvariant="normal">i</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>10</mn><mo> </mo><mi mathvariant="normal">d</mi><mi mathvariant="normal">B</mi><mi mathvariant="normal">i</mi></mrow></semantics></math></inline-formula>, in the planar and stepped lens antennas, respectively.
first_indexed 2024-03-11T00:16:28Z
format Article
id doaj.art-6570ba07cfcd4ca78ea0d8d94d5d5be8
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-11T00:16:28Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-6570ba07cfcd4ca78ea0d8d94d5d5be82023-11-18T23:36:49ZengMDPI AGSensors1424-82202023-08-012315696110.3390/s23156961Beam Steering 3D Printed Dielectric Lens Antennas for Millimeter-Wave and 5G ApplicationsAsrin Piroutiniya0Mohamad Hosein Rasekhmanesh1José Luis Masa-Campos2Javier López-Hernández3Eduardo García-Marín4Adrián Tamayo-Domínguez5Pablo Sánchez-Olivares6Jorge A. Ruiz-Cruz7Group of RadioFrequency: Circuits and Systems (RFCAS), Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, SpainGroup of RadioFrequency: Circuits and Systems (RFCAS), Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, SpainGroup of RadioFrequency: Circuits and Systems (RFCAS), Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, SpainGroup of RadioFrequency: Circuits and Systems (RFCAS), Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, SpainGroup of RadioFrequency: Circuits and Systems (RFCAS), Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, SpainCentro de Investigación en Procesado de la Información y Telecomunicaciones, Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid, 28040 Madrid, SpainCentro de Investigación en Procesado de la Información y Telecomunicaciones, Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid, 28040 Madrid, SpainGroup of RadioFrequency: Circuits and Systems (RFCAS), Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, SpainTwo types of cost-efficient antennas based on dielectric gradient index dielectric lens have been designed for 5G applications at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>28</mn><mo> </mo><mi mathvariant="normal">G</mi><mi mathvariant="normal">H</mi><mi mathvariant="normal">z</mi></mrow></semantics></math></inline-formula>. The first is a linearly polarized flat lens antenna (LP-FLA) for terrestrial 5G communications. The second is a novel circularly polarized stepped lens antenna (CP-SLA) for 5G satellite services. An efficient design method is presented to optimize and conform the lens topology to the radiation pattern coming from the antenna feeder. The LP-FLA is fed by a traditional linearly polarized pyramidal horn antenna (PHA). The CP-SLA is fed by an open-ended bow-tie waveguide cavity (BCA) antenna. This cavity feeder (BCA), using cross-sections with bow-tie shapes, allows having circular polarization at the desired frequency bandwidth. The two types of presented antennas have been manufactured in order to verify their performance by an easy, low-cost, three-dimensional (3D) printing technique based on stereolithography. The peak realized gain value for the flat (LP-FLA) and stepped (CP-SLA) lens antennas have been increased at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>28</mn><mo> </mo><mi mathvariant="normal">G</mi><mi mathvariant="normal">H</mi><mi mathvariant="normal">z</mi></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>25.2</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>24.8</mn><mo> </mo><mi mathvariant="normal">d</mi><mi mathvariant="normal">B</mi><mi mathvariant="normal">i</mi></mrow></semantics></math></inline-formula>, respectively, by disposing the lens structures at the appropriated distance from the feeders. Likewise, using an array of horns (PHA) or open-ended bow-tie waveguide cavity (BCA) antenna feeders, it is possible to obtain a maximum steering angle range of 20° and 35°, for a directivity over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>15</mn><mo> </mo><mi mathvariant="normal">d</mi><mi mathvariant="normal">B</mi><mi mathvariant="normal">i</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>10</mn><mo> </mo><mi mathvariant="normal">d</mi><mi mathvariant="normal">B</mi><mi mathvariant="normal">i</mi></mrow></semantics></math></inline-formula>, in the planar and stepped lens antennas, respectively.https://www.mdpi.com/1424-8220/23/15/6961lens antenna3D printingmanufacturing by stereolithographypencil beam5Ghorn antenna
spellingShingle Asrin Piroutiniya
Mohamad Hosein Rasekhmanesh
José Luis Masa-Campos
Javier López-Hernández
Eduardo García-Marín
Adrián Tamayo-Domínguez
Pablo Sánchez-Olivares
Jorge A. Ruiz-Cruz
Beam Steering 3D Printed Dielectric Lens Antennas for Millimeter-Wave and 5G Applications
Sensors
lens antenna
3D printing
manufacturing by stereolithography
pencil beam
5G
horn antenna
title Beam Steering 3D Printed Dielectric Lens Antennas for Millimeter-Wave and 5G Applications
title_full Beam Steering 3D Printed Dielectric Lens Antennas for Millimeter-Wave and 5G Applications
title_fullStr Beam Steering 3D Printed Dielectric Lens Antennas for Millimeter-Wave and 5G Applications
title_full_unstemmed Beam Steering 3D Printed Dielectric Lens Antennas for Millimeter-Wave and 5G Applications
title_short Beam Steering 3D Printed Dielectric Lens Antennas for Millimeter-Wave and 5G Applications
title_sort beam steering 3d printed dielectric lens antennas for millimeter wave and 5g applications
topic lens antenna
3D printing
manufacturing by stereolithography
pencil beam
5G
horn antenna
url https://www.mdpi.com/1424-8220/23/15/6961
work_keys_str_mv AT asrinpiroutiniya beamsteering3dprinteddielectriclensantennasformillimeterwaveand5gapplications
AT mohamadhoseinrasekhmanesh beamsteering3dprinteddielectriclensantennasformillimeterwaveand5gapplications
AT joseluismasacampos beamsteering3dprinteddielectriclensantennasformillimeterwaveand5gapplications
AT javierlopezhernandez beamsteering3dprinteddielectriclensantennasformillimeterwaveand5gapplications
AT eduardogarciamarin beamsteering3dprinteddielectriclensantennasformillimeterwaveand5gapplications
AT adriantamayodominguez beamsteering3dprinteddielectriclensantennasformillimeterwaveand5gapplications
AT pablosanchezolivares beamsteering3dprinteddielectriclensantennasformillimeterwaveand5gapplications
AT jorgearuizcruz beamsteering3dprinteddielectriclensantennasformillimeterwaveand5gapplications