On the State-Feedback Controller Design for Polynomial Linear Parameter-Varying Systems with Pole Placement within Linear Matrix Inequality Regions

The present paper addresses linear parameter-varying systems with high-order time-varying parameter dependency known as polynomial LPV systems and their controller design. Throughout this work, a procedure ensuring a state-feedback controller from a parameterized linear matrix inequality (PLMI) solu...

Full description

Bibliographic Details
Main Authors: Jorge A. Brizuela-Mendoza, Juan Carlos Mixteco-Sánchez, Maria A. López-Osorio, Gerardo Ortiz-Torres, Felipe D. J. Sorcia-Vázquez, Ricardo Eliú Lozoya-Ponce, Moises B. Ramos-Martínez, Alan F. Pérez-Vidal, Jesse Y. Rumbo Morales, Cesar H. Guzmán-Valdivia, Mayra G. Mena-Enriquez, Carlos Alberto Torres-Cantero
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/22/4696
Description
Summary:The present paper addresses linear parameter-varying systems with high-order time-varying parameter dependency known as polynomial LPV systems and their controller design. Throughout this work, a procedure ensuring a state-feedback controller from a parameterized linear matrix inequality (PLMI) solution is presented. As the main contribution of this paper, the controller is designed by considering the time-varying parameter rate as a tuning parameter with a continuous control gain in such a way that the closed-loop eigenvalues lie in a complex plane subset, with high-order time-varying parameters defining the system dynamics. Simulation results are presented, aiming to show the effectiveness of the proposed controller design.
ISSN:2227-7390