Lithium Niobate – Enhanced Photoacoustic Spectroscopy
In this work, we report on the novel employment of lithium niobate tuning forks as acoustic transducers in photoacoustic spectroscopy for gas sensing. The lithium niobate tuning fork (LiNTF) exhibits a fundamental resonance frequency of 39196.6 Hz and a quality factor Q = 5900 at atmospheric pressur...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2024-02-01
|
Series: | Photoacoustics |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2213597923001301 |
_version_ | 1797348637283450880 |
---|---|
author | Aldo F.P. Cantatore Giansergio Menduni Andrea Zifarelli Pietro Patimisco Miguel Gonzalez Huseyin R. Seren Vincenzo Spagnolo Angelo Sampaolo |
author_facet | Aldo F.P. Cantatore Giansergio Menduni Andrea Zifarelli Pietro Patimisco Miguel Gonzalez Huseyin R. Seren Vincenzo Spagnolo Angelo Sampaolo |
author_sort | Aldo F.P. Cantatore |
collection | DOAJ |
description | In this work, we report on the novel employment of lithium niobate tuning forks as acoustic transducers in photoacoustic spectroscopy for gas sensing. The lithium niobate tuning fork (LiNTF) exhibits a fundamental resonance frequency of 39196.6 Hz and a quality factor Q = 5900 at atmospheric pressure. The possibility to operate the LiNTF as a photoacoustic wave detector was demonstrated targeting a water vapor absorption line falling at 7181.14 cm−1 (1.39 µm). A noise equivalent concentration of 2 ppm was reached with a signal integration time of 20 s. These preliminary results open the path towards integrated photonic devices for gas sensing with LiNTF-based detectors on lithium niobate platforms. |
first_indexed | 2024-03-08T12:08:40Z |
format | Article |
id | doaj.art-657ddf370dca4e229f496ade3e167129 |
institution | Directory Open Access Journal |
issn | 2213-5979 |
language | English |
last_indexed | 2024-03-08T12:08:40Z |
publishDate | 2024-02-01 |
publisher | Elsevier |
record_format | Article |
series | Photoacoustics |
spelling | doaj.art-657ddf370dca4e229f496ade3e1671292024-01-23T04:15:36ZengElsevierPhotoacoustics2213-59792024-02-0135100577Lithium Niobate – Enhanced Photoacoustic SpectroscopyAldo F.P. Cantatore0Giansergio Menduni1Andrea Zifarelli2Pietro Patimisco3Miguel Gonzalez4Huseyin R. Seren5Vincenzo Spagnolo6Angelo Sampaolo7PolySense Lab, Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Via Amendola 173, Bari 70126, ItalyCorresponding authors.; PolySense Lab, Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Via Amendola 173, Bari 70126, ItalyPolySense Lab, Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Via Amendola 173, Bari 70126, ItalyPolySense Lab, Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Via Amendola 173, Bari 70126, Italy; PolySense Innovations srl, Via Amendola 173, Bari 70126, ItalyCorresponding authors.; Aramco Services Company, 17155 Park Row, Houston, TX 77084, USAAramco Services Company, 17155 Park Row, Houston, TX 77084, USAPolySense Lab, Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Via Amendola 173, Bari 70126, Italy; PolySense Innovations srl, Via Amendola 173, Bari 70126, ItalyPolySense Lab, Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Via Amendola 173, Bari 70126, Italy; PolySense Innovations srl, Via Amendola 173, Bari 70126, ItalyIn this work, we report on the novel employment of lithium niobate tuning forks as acoustic transducers in photoacoustic spectroscopy for gas sensing. The lithium niobate tuning fork (LiNTF) exhibits a fundamental resonance frequency of 39196.6 Hz and a quality factor Q = 5900 at atmospheric pressure. The possibility to operate the LiNTF as a photoacoustic wave detector was demonstrated targeting a water vapor absorption line falling at 7181.14 cm−1 (1.39 µm). A noise equivalent concentration of 2 ppm was reached with a signal integration time of 20 s. These preliminary results open the path towards integrated photonic devices for gas sensing with LiNTF-based detectors on lithium niobate platforms.http://www.sciencedirect.com/science/article/pii/S2213597923001301Lithium niobate forksLiNTFLithium niobate-enhanced photoacoustic spectroscopyLiNPASQEPASMeasurement of fluid properties |
spellingShingle | Aldo F.P. Cantatore Giansergio Menduni Andrea Zifarelli Pietro Patimisco Miguel Gonzalez Huseyin R. Seren Vincenzo Spagnolo Angelo Sampaolo Lithium Niobate – Enhanced Photoacoustic Spectroscopy Photoacoustics Lithium niobate forks LiNTF Lithium niobate-enhanced photoacoustic spectroscopy LiNPAS QEPAS Measurement of fluid properties |
title | Lithium Niobate – Enhanced Photoacoustic Spectroscopy |
title_full | Lithium Niobate – Enhanced Photoacoustic Spectroscopy |
title_fullStr | Lithium Niobate – Enhanced Photoacoustic Spectroscopy |
title_full_unstemmed | Lithium Niobate – Enhanced Photoacoustic Spectroscopy |
title_short | Lithium Niobate – Enhanced Photoacoustic Spectroscopy |
title_sort | lithium niobate enhanced photoacoustic spectroscopy |
topic | Lithium niobate forks LiNTF Lithium niobate-enhanced photoacoustic spectroscopy LiNPAS QEPAS Measurement of fluid properties |
url | http://www.sciencedirect.com/science/article/pii/S2213597923001301 |
work_keys_str_mv | AT aldofpcantatore lithiumniobateenhancedphotoacousticspectroscopy AT giansergiomenduni lithiumniobateenhancedphotoacousticspectroscopy AT andreazifarelli lithiumniobateenhancedphotoacousticspectroscopy AT pietropatimisco lithiumniobateenhancedphotoacousticspectroscopy AT miguelgonzalez lithiumniobateenhancedphotoacousticspectroscopy AT huseyinrseren lithiumniobateenhancedphotoacousticspectroscopy AT vincenzospagnolo lithiumniobateenhancedphotoacousticspectroscopy AT angelosampaolo lithiumniobateenhancedphotoacousticspectroscopy |