On General Reduced Second Zagreb Index of Graphs

Graph-based molecular structure descriptors (often called “topological indices”) are useful for modeling the physical and chemical properties of molecules, designing pharmacologically active compounds, detecting environmentally hazardous substances, etc. The graph invariant <inline-formula><...

Full description

Bibliographic Details
Main Authors: Lkhagva Buyantogtokh, Batmend Horoldagva, Kinkar Chandra Das
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/19/3553
_version_ 1827654003290275840
author Lkhagva Buyantogtokh
Batmend Horoldagva
Kinkar Chandra Das
author_facet Lkhagva Buyantogtokh
Batmend Horoldagva
Kinkar Chandra Das
author_sort Lkhagva Buyantogtokh
collection DOAJ
description Graph-based molecular structure descriptors (often called “topological indices”) are useful for modeling the physical and chemical properties of molecules, designing pharmacologically active compounds, detecting environmentally hazardous substances, etc. The graph invariant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>R</mi><msub><mi>M</mi><mi>α</mi></msub></mrow></semantics></math></inline-formula>, known under the name general reduced second Zagreb index, is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>R</mi><msub><mi>M</mi><mi>α</mi></msub><mrow><mo>(</mo><mi mathvariant="normal">Γ</mi><mo>)</mo></mrow><mo>=</mo><msub><mo>∑</mo><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi mathvariant="normal">Γ</mi><mo>)</mo></mrow></msub><mrow><mo>(</mo><msub><mi>d</mi><mi mathvariant="normal">Γ</mi></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>α</mi><mo>)</mo></mrow><mrow><mo>(</mo><msub><mi>d</mi><mi mathvariant="normal">Γ</mi></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>α</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi mathvariant="normal">Γ</mi></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is the degree of the vertex <i>v</i> of the graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Γ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> is any real number. In this paper, among all trees of order <i>n</i>, and all unicyclic graphs of order <i>n</i> with girth <i>g</i>, we characterize the extremal graphs with respect to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>R</mi><msub><mi>M</mi><mi>α</mi></msub></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>α</mi><mo>≥</mo><mo>−</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>)</mo></mrow></semantics></math></inline-formula>. Using the extremal unicyclic graphs, we obtain a lower bound on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>R</mi><msub><mi>M</mi><mi>α</mi></msub><mrow><mo>(</mo><mi mathvariant="normal">Γ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of graphs in terms of order <i>n</i> with <i>k</i> cut edges, and completely determine the corresponding extremal graphs. Moreover, we obtain several upper bounds on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>R</mi><msub><mi>M</mi><mi>α</mi></msub></mrow></semantics></math></inline-formula> of different classes of graphs in terms of order <i>n</i>, size <i>m</i>, independence number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>, chromatic number <i>k</i>, etc. In particular, we present an upper bound on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>R</mi><msub><mi>M</mi><mi>α</mi></msub></mrow></semantics></math></inline-formula> of connected triangle-free graph of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>></mo><mn>2</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> edges with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>></mo><mo>−</mo><mn>1.5</mn></mrow></semantics></math></inline-formula>, and characterize the extremal graphs. Finally, we prove that the Turán graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> gives the maximum <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>R</mi><msub><mi>M</mi><mi>α</mi></msub><mspace width="0.166667em"></mspace><mrow><mo>(</mo><mi>α</mi><mo>≥</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula> among all graphs of order <i>n</i> with chromatic number <i>k</i>.
first_indexed 2024-03-09T21:28:32Z
format Article
id doaj.art-6584896dddc24f7ca25adaa9b4efafd9
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T21:28:32Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-6584896dddc24f7ca25adaa9b4efafd92023-11-23T21:03:30ZengMDPI AGMathematics2227-73902022-09-011019355310.3390/math10193553On General Reduced Second Zagreb Index of GraphsLkhagva Buyantogtokh0Batmend Horoldagva1Kinkar Chandra Das2Department of Mathematics, Mongolian National University of Education, Baga Toiruu-14, Ulaanbaatar 210648, MongoliaDepartment of Mathematics, Mongolian National University of Education, Baga Toiruu-14, Ulaanbaatar 210648, MongoliaDepartment of Mathematics, Sungkyunkwan University, Suwon 16419, KoreaGraph-based molecular structure descriptors (often called “topological indices”) are useful for modeling the physical and chemical properties of molecules, designing pharmacologically active compounds, detecting environmentally hazardous substances, etc. The graph invariant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>R</mi><msub><mi>M</mi><mi>α</mi></msub></mrow></semantics></math></inline-formula>, known under the name general reduced second Zagreb index, is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>R</mi><msub><mi>M</mi><mi>α</mi></msub><mrow><mo>(</mo><mi mathvariant="normal">Γ</mi><mo>)</mo></mrow><mo>=</mo><msub><mo>∑</mo><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi mathvariant="normal">Γ</mi><mo>)</mo></mrow></msub><mrow><mo>(</mo><msub><mi>d</mi><mi mathvariant="normal">Γ</mi></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>α</mi><mo>)</mo></mrow><mrow><mo>(</mo><msub><mi>d</mi><mi mathvariant="normal">Γ</mi></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>α</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi mathvariant="normal">Γ</mi></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is the degree of the vertex <i>v</i> of the graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Γ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> is any real number. In this paper, among all trees of order <i>n</i>, and all unicyclic graphs of order <i>n</i> with girth <i>g</i>, we characterize the extremal graphs with respect to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>R</mi><msub><mi>M</mi><mi>α</mi></msub></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>α</mi><mo>≥</mo><mo>−</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>)</mo></mrow></semantics></math></inline-formula>. Using the extremal unicyclic graphs, we obtain a lower bound on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>R</mi><msub><mi>M</mi><mi>α</mi></msub><mrow><mo>(</mo><mi mathvariant="normal">Γ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of graphs in terms of order <i>n</i> with <i>k</i> cut edges, and completely determine the corresponding extremal graphs. Moreover, we obtain several upper bounds on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>R</mi><msub><mi>M</mi><mi>α</mi></msub></mrow></semantics></math></inline-formula> of different classes of graphs in terms of order <i>n</i>, size <i>m</i>, independence number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>, chromatic number <i>k</i>, etc. In particular, we present an upper bound on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>R</mi><msub><mi>M</mi><mi>α</mi></msub></mrow></semantics></math></inline-formula> of connected triangle-free graph of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>></mo><mn>2</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> edges with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>></mo><mo>−</mo><mn>1.5</mn></mrow></semantics></math></inline-formula>, and characterize the extremal graphs. Finally, we prove that the Turán graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> gives the maximum <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>R</mi><msub><mi>M</mi><mi>α</mi></msub><mspace width="0.166667em"></mspace><mrow><mo>(</mo><mi>α</mi><mo>≥</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula> among all graphs of order <i>n</i> with chromatic number <i>k</i>.https://www.mdpi.com/2227-7390/10/19/3553Zagreb indicesgirthclique numberchromatic numberTurán graph
spellingShingle Lkhagva Buyantogtokh
Batmend Horoldagva
Kinkar Chandra Das
On General Reduced Second Zagreb Index of Graphs
Mathematics
Zagreb indices
girth
clique number
chromatic number
Turán graph
title On General Reduced Second Zagreb Index of Graphs
title_full On General Reduced Second Zagreb Index of Graphs
title_fullStr On General Reduced Second Zagreb Index of Graphs
title_full_unstemmed On General Reduced Second Zagreb Index of Graphs
title_short On General Reduced Second Zagreb Index of Graphs
title_sort on general reduced second zagreb index of graphs
topic Zagreb indices
girth
clique number
chromatic number
Turán graph
url https://www.mdpi.com/2227-7390/10/19/3553
work_keys_str_mv AT lkhagvabuyantogtokh ongeneralreducedsecondzagrebindexofgraphs
AT batmendhoroldagva ongeneralreducedsecondzagrebindexofgraphs
AT kinkarchandradas ongeneralreducedsecondzagrebindexofgraphs