Research on PointPillars Algorithm Based on Feature-Enhanced Backbone Network

In the industrial field, the 3D target detection algorithm PointPillars has gained popularity. Improving target detection accuracy while maintaining high efficiency has been a significant challenge. To address the issue of low target detection accuracy in the PointPillars 3D target detection algorit...

Full description

Bibliographic Details
Main Authors: Xiaoning Shu, Liang Zhang
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/13/7/1233
Description
Summary:In the industrial field, the 3D target detection algorithm PointPillars has gained popularity. Improving target detection accuracy while maintaining high efficiency has been a significant challenge. To address the issue of low target detection accuracy in the PointPillars 3D target detection algorithm, this paper proposes an algorithm based on feature enhancement to improve the backbone network. The algorithm enhances preliminary feature information of the backbone network by modifying it based on PointPillars with the aid of channel attention and spatial attention mechanisms. To address the inefficiency caused by the excessive number of subsampled parameters in PointPillars, FasterNet (a lightweight and efficient feature extraction network) is utilized for down-sampling and forming different scale feature maps. To prevent the loss and blurring of extracted features resulting from the use of inverse convolution, we utilize the lightweight and efficient up-sampling modules Carafe and Dysample for adjusting resolution. Experimental results indicate improved accuracy under all difficulties of the KITTI dataset, demonstrating the superiority of the algorithm over PointPillars.
ISSN:2079-9292