Overburden stress evolution characteristics and prediction of disasters with across-gully mining

The coal water co-mining of shallow coal seams in the loess gully area of Northern Shaanxi is affected by the coupling effect of overburden rock structure and topography. The development characteristics of mining fracture are complex and can induce mining and environmental disasters. To predict the...

Full description

Bibliographic Details
Main Authors: Hongwei Wang, Baolin Jiang, Jianqiang Jiao, Yanjun Li
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-02-01
Series:Frontiers in Earth Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/feart.2023.1115323/full
_version_ 1797902960537108480
author Hongwei Wang
Hongwei Wang
Hongwei Wang
Baolin Jiang
Jianqiang Jiao
Yanjun Li
author_facet Hongwei Wang
Hongwei Wang
Hongwei Wang
Baolin Jiang
Jianqiang Jiao
Yanjun Li
author_sort Hongwei Wang
collection DOAJ
description The coal water co-mining of shallow coal seams in the loess gully area of Northern Shaanxi is affected by the coupling effect of overburden rock structure and topography. The development characteristics of mining fracture are complex and can induce mining and environmental disasters. To predict the disaster formation, taking the 113101 working face of the Kunyuan Coal Mine as the engineering background, numerical simulation, physical similarity simulation experiment, and theoretical analysis methods were used to analyze the mining gully of a shallow coal seam in a loess gully area. Based on the dynamic evolution characteristics of stress at different locations, the formation positions, dynamic development, and evolution processes of various fractures were studied; disaster-causing mechanisms were revealed and comprehensive methods were proposed. The results showed that in across-gully mining, the maximum horizontal compressive stress at the bottom of Gully No. 2 was approximately 20.00 MPa, the maximum horizontal tensile stress of the reverse slope section was approximately 1.50 MPa, the width of the F5 fracture of Gully No. 2 was 46.00 cm, and the elevation difference was up to 52.00 cm. The working face across-gully mining formed tensile fractures in most areas, collapsed fractures at the gully bottom, and extruded fractures in the reverse slope section. The fracture at the gully bottom could easily induce water–sand inrush and roof caving and supports crushing. The slope fracture could also induce a gully-induced landslide. According to the mechanisms and distribution areas of fracture disasters, the disaster areas were divided into water–sand inrush areas at the gully bottom, roof caving and supports crushing areas at the gully bottom and at the base of the slope section, and landslide areas at the upper part of the slope section and reverse slope section. Appropriate prevention and control measures were proposed, such as the upstream interception of surface water, slope reinforcement in the middle and upper part of the downhill section, artificial precracking of the roof in the middle and upper part of the downhill section, and grouting reinforcement at the gully bottom and slope toe of the downhill section. These measures were proven to effectively guarantee the safe and efficient mining efficiency of the working face.
first_indexed 2024-04-10T09:25:27Z
format Article
id doaj.art-658b51b18815408f91c5b242babfdeb8
institution Directory Open Access Journal
issn 2296-6463
language English
last_indexed 2024-04-10T09:25:27Z
publishDate 2023-02-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Earth Science
spelling doaj.art-658b51b18815408f91c5b242babfdeb82023-02-20T04:56:36ZengFrontiers Media S.A.Frontiers in Earth Science2296-64632023-02-011110.3389/feart.2023.11153231115323Overburden stress evolution characteristics and prediction of disasters with across-gully miningHongwei Wang0Hongwei Wang1Hongwei Wang2Baolin Jiang3Jianqiang Jiao4Yanjun Li5College of Energy Science and Engineering, Xi’an University of Science and Technology, Xi’an, ChinaState Key Laboratory of Green and Low-carbon Development of Tar-rich Coal in Western China, Xi’an University of Science and Technology, Xi’an, ChinaKey Laboratory of Western Mine Exploitation and Hazard Prevention Ministry of Education, Xi’an University of Science and Technology, Xi’an, ChinaCollege of Energy Science and Engineering, Xi’an University of Science and Technology, Xi’an, ChinaCollege of Energy Science and Engineering, Xi’an University of Science and Technology, Xi’an, ChinaXiʼan Research Institute, China Coal Technology & Engineering Group Corp, Xi′an, ChinaThe coal water co-mining of shallow coal seams in the loess gully area of Northern Shaanxi is affected by the coupling effect of overburden rock structure and topography. The development characteristics of mining fracture are complex and can induce mining and environmental disasters. To predict the disaster formation, taking the 113101 working face of the Kunyuan Coal Mine as the engineering background, numerical simulation, physical similarity simulation experiment, and theoretical analysis methods were used to analyze the mining gully of a shallow coal seam in a loess gully area. Based on the dynamic evolution characteristics of stress at different locations, the formation positions, dynamic development, and evolution processes of various fractures were studied; disaster-causing mechanisms were revealed and comprehensive methods were proposed. The results showed that in across-gully mining, the maximum horizontal compressive stress at the bottom of Gully No. 2 was approximately 20.00 MPa, the maximum horizontal tensile stress of the reverse slope section was approximately 1.50 MPa, the width of the F5 fracture of Gully No. 2 was 46.00 cm, and the elevation difference was up to 52.00 cm. The working face across-gully mining formed tensile fractures in most areas, collapsed fractures at the gully bottom, and extruded fractures in the reverse slope section. The fracture at the gully bottom could easily induce water–sand inrush and roof caving and supports crushing. The slope fracture could also induce a gully-induced landslide. According to the mechanisms and distribution areas of fracture disasters, the disaster areas were divided into water–sand inrush areas at the gully bottom, roof caving and supports crushing areas at the gully bottom and at the base of the slope section, and landslide areas at the upper part of the slope section and reverse slope section. Appropriate prevention and control measures were proposed, such as the upstream interception of surface water, slope reinforcement in the middle and upper part of the downhill section, artificial precracking of the roof in the middle and upper part of the downhill section, and grouting reinforcement at the gully bottom and slope toe of the downhill section. These measures were proven to effectively guarantee the safe and efficient mining efficiency of the working face.https://www.frontiersin.org/articles/10.3389/feart.2023.1115323/fullloess gully areashallow coal seamcoal water co-miningcharacteristics and transfer of stressfractures of overburdenprevention and control of disasters
spellingShingle Hongwei Wang
Hongwei Wang
Hongwei Wang
Baolin Jiang
Jianqiang Jiao
Yanjun Li
Overburden stress evolution characteristics and prediction of disasters with across-gully mining
Frontiers in Earth Science
loess gully area
shallow coal seam
coal water co-mining
characteristics and transfer of stress
fractures of overburden
prevention and control of disasters
title Overburden stress evolution characteristics and prediction of disasters with across-gully mining
title_full Overburden stress evolution characteristics and prediction of disasters with across-gully mining
title_fullStr Overburden stress evolution characteristics and prediction of disasters with across-gully mining
title_full_unstemmed Overburden stress evolution characteristics and prediction of disasters with across-gully mining
title_short Overburden stress evolution characteristics and prediction of disasters with across-gully mining
title_sort overburden stress evolution characteristics and prediction of disasters with across gully mining
topic loess gully area
shallow coal seam
coal water co-mining
characteristics and transfer of stress
fractures of overburden
prevention and control of disasters
url https://www.frontiersin.org/articles/10.3389/feart.2023.1115323/full
work_keys_str_mv AT hongweiwang overburdenstressevolutioncharacteristicsandpredictionofdisasterswithacrossgullymining
AT hongweiwang overburdenstressevolutioncharacteristicsandpredictionofdisasterswithacrossgullymining
AT hongweiwang overburdenstressevolutioncharacteristicsandpredictionofdisasterswithacrossgullymining
AT baolinjiang overburdenstressevolutioncharacteristicsandpredictionofdisasterswithacrossgullymining
AT jianqiangjiao overburdenstressevolutioncharacteristicsandpredictionofdisasterswithacrossgullymining
AT yanjunli overburdenstressevolutioncharacteristicsandpredictionofdisasterswithacrossgullymining