<i>η</i>-Ricci–Yamabe Solitons along Riemannian Submersions

In this paper, we investigate the geometrical axioms of Riemannian submersions in the context of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-for...

Full description

Bibliographic Details
Main Authors: Mohd Danish Siddiqi, Fatemah Mofarreh, Mehmet Akif Akyol, Ali H. Hakami
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/8/796
Description
Summary:In this paper, we investigate the geometrical axioms of Riemannian submersions in the context of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci–Yamabe soliton (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-RY soliton) with a potential field. We give the categorization of each fiber of Riemannian submersion as an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-RY soliton, an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci soliton, and an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Yamabe soliton. Additionally, we consider the many circumstances under which a target manifold of Riemannian submersion is an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-RY soliton, an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci soliton, an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Yamabe soliton, or a quasi-Yamabe soliton. We deduce a Poisson equation on a Riemannian submersion in a specific scenario if the potential vector field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula> of the soliton is of gradient type =:grad<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>γ</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> and provide some examples of an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-RY soliton, which illustrates our finding. Finally, we explore a number theoretic approach to Riemannian submersion with totally geodesic fibers.
ISSN:2075-1680