<i>η</i>-Ricci–Yamabe Solitons along Riemannian Submersions

In this paper, we investigate the geometrical axioms of Riemannian submersions in the context of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-for...

Full description

Bibliographic Details
Main Authors: Mohd Danish Siddiqi, Fatemah Mofarreh, Mehmet Akif Akyol, Ali H. Hakami
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/8/796
_version_ 1797585454900445184
author Mohd Danish Siddiqi
Fatemah Mofarreh
Mehmet Akif Akyol
Ali H. Hakami
author_facet Mohd Danish Siddiqi
Fatemah Mofarreh
Mehmet Akif Akyol
Ali H. Hakami
author_sort Mohd Danish Siddiqi
collection DOAJ
description In this paper, we investigate the geometrical axioms of Riemannian submersions in the context of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci–Yamabe soliton (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-RY soliton) with a potential field. We give the categorization of each fiber of Riemannian submersion as an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-RY soliton, an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci soliton, and an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Yamabe soliton. Additionally, we consider the many circumstances under which a target manifold of Riemannian submersion is an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-RY soliton, an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci soliton, an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Yamabe soliton, or a quasi-Yamabe soliton. We deduce a Poisson equation on a Riemannian submersion in a specific scenario if the potential vector field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula> of the soliton is of gradient type =:grad<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>γ</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> and provide some examples of an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-RY soliton, which illustrates our finding. Finally, we explore a number theoretic approach to Riemannian submersion with totally geodesic fibers.
first_indexed 2024-03-11T00:07:25Z
format Article
id doaj.art-6597fd525ab049fdacb788f5b6029e4b
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-11T00:07:25Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-6597fd525ab049fdacb788f5b6029e4b2023-11-19T00:15:24ZengMDPI AGAxioms2075-16802023-08-0112879610.3390/axioms12080796<i>η</i>-Ricci–Yamabe Solitons along Riemannian SubmersionsMohd Danish Siddiqi0Fatemah Mofarreh1Mehmet Akif Akyol2Ali H. Hakami3Department of Mathematics, College of Science, Jazan University, P.O. Box 277, Jazan 45142, Saudi ArabiaMathematical Science Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 11546, Saudi ArabiaDepartment of Mathematics, Faculty of Arts and Sciences, Bingol University, Bingol 12000, TurkeyDepartment of Mathematics, College of Science, Jazan University, P.O. Box 277, Jazan 45142, Saudi ArabiaIn this paper, we investigate the geometrical axioms of Riemannian submersions in the context of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci–Yamabe soliton (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-RY soliton) with a potential field. We give the categorization of each fiber of Riemannian submersion as an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-RY soliton, an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci soliton, and an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Yamabe soliton. Additionally, we consider the many circumstances under which a target manifold of Riemannian submersion is an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-RY soliton, an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci soliton, an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Yamabe soliton, or a quasi-Yamabe soliton. We deduce a Poisson equation on a Riemannian submersion in a specific scenario if the potential vector field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula> of the soliton is of gradient type =:grad<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>γ</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> and provide some examples of an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-RY soliton, which illustrates our finding. Finally, we explore a number theoretic approach to Riemannian submersion with totally geodesic fibers.https://www.mdpi.com/2075-1680/12/8/796<i>η</i>-Ricci–Yamabe solitonRiemannian submersionRiemannian manifoldhomotopy groups
spellingShingle Mohd Danish Siddiqi
Fatemah Mofarreh
Mehmet Akif Akyol
Ali H. Hakami
<i>η</i>-Ricci–Yamabe Solitons along Riemannian Submersions
Axioms
<i>η</i>-Ricci–Yamabe soliton
Riemannian submersion
Riemannian manifold
homotopy groups
title <i>η</i>-Ricci–Yamabe Solitons along Riemannian Submersions
title_full <i>η</i>-Ricci–Yamabe Solitons along Riemannian Submersions
title_fullStr <i>η</i>-Ricci–Yamabe Solitons along Riemannian Submersions
title_full_unstemmed <i>η</i>-Ricci–Yamabe Solitons along Riemannian Submersions
title_short <i>η</i>-Ricci–Yamabe Solitons along Riemannian Submersions
title_sort i η i ricci yamabe solitons along riemannian submersions
topic <i>η</i>-Ricci–Yamabe soliton
Riemannian submersion
Riemannian manifold
homotopy groups
url https://www.mdpi.com/2075-1680/12/8/796
work_keys_str_mv AT mohddanishsiddiqi iēiricciyamabesolitonsalongriemanniansubmersions
AT fatemahmofarreh iēiricciyamabesolitonsalongriemanniansubmersions
AT mehmetakifakyol iēiricciyamabesolitonsalongriemanniansubmersions
AT alihhakami iēiricciyamabesolitonsalongriemanniansubmersions