CpGPAP: CpG island predictor analysis platform

<p>Abstract</p> <p>Background</p> <p>Genomic islands play an important role in medical, methylation and biological studies. To explore the region, we propose a CpG islands prediction analysis platform for genome sequence exploration (CpGPAP).</p> <p>Results&...

Full description

Bibliographic Details
Main Authors: Chuang Li-Yeh, Yang Cheng-Huei, Lin Ming-Cheng, Yang Cheng-Hong
Format: Article
Language:English
Published: BMC 2012-03-01
Series:BMC Genetics
Online Access:http://www.biomedcentral.com/1471-2156/13/13
_version_ 1818572254766694400
author Chuang Li-Yeh
Yang Cheng-Huei
Lin Ming-Cheng
Yang Cheng-Hong
author_facet Chuang Li-Yeh
Yang Cheng-Huei
Lin Ming-Cheng
Yang Cheng-Hong
author_sort Chuang Li-Yeh
collection DOAJ
description <p>Abstract</p> <p>Background</p> <p>Genomic islands play an important role in medical, methylation and biological studies. To explore the region, we propose a CpG islands prediction analysis platform for genome sequence exploration (CpGPAP).</p> <p>Results</p> <p>CpGPAP is a web-based application that provides a user-friendly interface for predicting CpG islands in genome sequences or in user input sequences. The prediction algorithms supported in CpGPAP include complementary particle swarm optimization (CPSO), a complementary genetic algorithm (CGA) and other methods (CpGPlot, CpGProD and CpGIS) found in the literature. The CpGPAP platform is easy to use and has three main features (1) selection of the prediction algorithm; (2) graphic visualization of results; and (3) application of related tools and dataset downloads. These features allow the user to easily view CpG island results and download the relevant island data. CpGPAP is freely available at <url>http://bio.kuas.edu.tw/CpGPAP/</url>.</p> <p>Conclusions</p> <p>The platform's supported algorithms (CPSO and CGA) provide a higher sensitivity and a higher correlation coefficient when compared to CpGPlot, CpGProD, CpGIS, and CpGcluster over an entire chromosome.</p>
first_indexed 2024-12-14T18:54:38Z
format Article
id doaj.art-659a57a4d9c34b17ac44f23370838436
institution Directory Open Access Journal
issn 1471-2156
language English
last_indexed 2024-12-14T18:54:38Z
publishDate 2012-03-01
publisher BMC
record_format Article
series BMC Genetics
spelling doaj.art-659a57a4d9c34b17ac44f233708384362022-12-21T22:51:07ZengBMCBMC Genetics1471-21562012-03-011311310.1186/1471-2156-13-13CpGPAP: CpG island predictor analysis platformChuang Li-YehYang Cheng-HueiLin Ming-ChengYang Cheng-Hong<p>Abstract</p> <p>Background</p> <p>Genomic islands play an important role in medical, methylation and biological studies. To explore the region, we propose a CpG islands prediction analysis platform for genome sequence exploration (CpGPAP).</p> <p>Results</p> <p>CpGPAP is a web-based application that provides a user-friendly interface for predicting CpG islands in genome sequences or in user input sequences. The prediction algorithms supported in CpGPAP include complementary particle swarm optimization (CPSO), a complementary genetic algorithm (CGA) and other methods (CpGPlot, CpGProD and CpGIS) found in the literature. The CpGPAP platform is easy to use and has three main features (1) selection of the prediction algorithm; (2) graphic visualization of results; and (3) application of related tools and dataset downloads. These features allow the user to easily view CpG island results and download the relevant island data. CpGPAP is freely available at <url>http://bio.kuas.edu.tw/CpGPAP/</url>.</p> <p>Conclusions</p> <p>The platform's supported algorithms (CPSO and CGA) provide a higher sensitivity and a higher correlation coefficient when compared to CpGPlot, CpGProD, CpGIS, and CpGcluster over an entire chromosome.</p>http://www.biomedcentral.com/1471-2156/13/13
spellingShingle Chuang Li-Yeh
Yang Cheng-Huei
Lin Ming-Cheng
Yang Cheng-Hong
CpGPAP: CpG island predictor analysis platform
BMC Genetics
title CpGPAP: CpG island predictor analysis platform
title_full CpGPAP: CpG island predictor analysis platform
title_fullStr CpGPAP: CpG island predictor analysis platform
title_full_unstemmed CpGPAP: CpG island predictor analysis platform
title_short CpGPAP: CpG island predictor analysis platform
title_sort cpgpap cpg island predictor analysis platform
url http://www.biomedcentral.com/1471-2156/13/13
work_keys_str_mv AT chuangliyeh cpgpapcpgislandpredictoranalysisplatform
AT yangchenghuei cpgpapcpgislandpredictoranalysisplatform
AT linmingcheng cpgpapcpgislandpredictoranalysisplatform
AT yangchenghong cpgpapcpgislandpredictoranalysisplatform