An Intelligent Cluster-Based Communication System for Multi-Unmanned Aerial Vehicles for Searching and Rescuing

It has been observed that the use of UAVs in search and rescue (SAR) operations is very advantageous. When, all of a sudden, a crisis strikes, UAV technology is incredibly helpful and works more effectively to identify the entire region of a disaster and identify victims trapped in the region. The d...

Full description

Bibliographic Details
Main Authors: Amjad Mehmood, Zeeshan Iqbal, Arqam Ali Shah, Carsten Maple, Jaime Lloret
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/12/3/607
Description
Summary:It has been observed that the use of UAVs in search and rescue (SAR) operations is very advantageous. When, all of a sudden, a crisis strikes, UAV technology is incredibly helpful and works more effectively to identify the entire region of a disaster and identify victims trapped in the region. The deployment of a UAV network with a high battery lifespan and complete coverage of the disaster region is the primary emphasis of this article. For the efficient communication of UAVS, we suggested the intelligent cluster-based multi-unmanned aerial vehicle (ICBM-UAV) protocol. In order to discover victims swiftly and rescue those who are trapped in the afflicted region as soon as possible, ICBM-UAV uses the clustering technique smartly, which helps conserve drone batteries and performs some of the useful computations within the CH and hence helps to lessen workload on network congestion. Dividing the CMBM-UAV into two parts, the information gathering and the user equipment location identification, improves network life and makes the search and rescue operation more efficient and successful. After going to through vigorous result calculation, it is deduced that the proposed scheme has outperformed the existing state-of-the-art protocols such as AODV, OSLR and flocking mechanisms in terms of throughput, PDR, and coverage area probability by considering each scenario with and without the presence of obstacles. Hence, by delivering an exploitable estimate before reaching the victim, the proposed approach could drastically minimize the search and rescue time to save valuable lives.
ISSN:2079-9292