On (<i>p</i>,<i>q</i>)–Fibonacci and (<i>p</i>,<i>q</i>)–Lucas Polynomials Associated with Changhee Numbers and Their Properties

Many properties of special polynomials, such as recurrence relations, sum formulas, and symmetric properties have been studied in the literature with the help of generating functions and their functional equations. In this paper, using the <inline-formula><math xmlns="http://www.w3.org...

Full description

Bibliographic Details
Main Authors: Chuanjun Zhang, Waseem Ahmad Khan, Can Kızılateş
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/4/851
Description
Summary:Many properties of special polynomials, such as recurrence relations, sum formulas, and symmetric properties have been studied in the literature with the help of generating functions and their functional equations. In this paper, using the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Fibonacci polynomials, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Lucas polynomials, and Changhee numbers, we define the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Fibonacci–Changhee polynomials and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Lucas–Changhee polynomials, respectively. We obtain some important identities and relations of these newly established polynomials by using their generating functions and functional equations. Then, we generalize the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Fibonacci–Changhee polynomials and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Lucas–Changhee polynomials called generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Fibonacci–Lucas–Changhee polynomials. We derive a determinantal representation for the generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Fibonacci–Lucas–Changhee polynomials in terms of the special Hessenberg determinant. Finally, we give a new recurrent relation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Fibonacci–Lucas–Changhee polynomials.
ISSN:2073-8994