On (<i>p</i>,<i>q</i>)–Fibonacci and (<i>p</i>,<i>q</i>)–Lucas Polynomials Associated with Changhee Numbers and Their Properties

Many properties of special polynomials, such as recurrence relations, sum formulas, and symmetric properties have been studied in the literature with the help of generating functions and their functional equations. In this paper, using the <inline-formula><math xmlns="http://www.w3.org...

Full description

Bibliographic Details
Main Authors: Chuanjun Zhang, Waseem Ahmad Khan, Can Kızılateş
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/4/851
_version_ 1797603427696508928
author Chuanjun Zhang
Waseem Ahmad Khan
Can Kızılateş
author_facet Chuanjun Zhang
Waseem Ahmad Khan
Can Kızılateş
author_sort Chuanjun Zhang
collection DOAJ
description Many properties of special polynomials, such as recurrence relations, sum formulas, and symmetric properties have been studied in the literature with the help of generating functions and their functional equations. In this paper, using the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Fibonacci polynomials, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Lucas polynomials, and Changhee numbers, we define the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Fibonacci–Changhee polynomials and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Lucas–Changhee polynomials, respectively. We obtain some important identities and relations of these newly established polynomials by using their generating functions and functional equations. Then, we generalize the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Fibonacci–Changhee polynomials and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Lucas–Changhee polynomials called generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Fibonacci–Lucas–Changhee polynomials. We derive a determinantal representation for the generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Fibonacci–Lucas–Changhee polynomials in terms of the special Hessenberg determinant. Finally, we give a new recurrent relation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Fibonacci–Lucas–Changhee polynomials.
first_indexed 2024-03-11T04:29:04Z
format Article
id doaj.art-65ad592f6664418aa31a7352b3d4bb2a
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-11T04:29:04Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-65ad592f6664418aa31a7352b3d4bb2a2023-11-17T21:33:38ZengMDPI AGSymmetry2073-89942023-04-0115485110.3390/sym15040851On (<i>p</i>,<i>q</i>)–Fibonacci and (<i>p</i>,<i>q</i>)–Lucas Polynomials Associated with Changhee Numbers and Their PropertiesChuanjun Zhang0Waseem Ahmad Khan1Can Kızılateş2School of Mathematics and Big Data, Guizhou Normal College, Guiyang 550018, ChinaDepartment of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar 31952, Saudi ArabiaDepartment of Mathematics, Zonguldak Bülent Ecevit University, Zonguldak 67100, TurkeyMany properties of special polynomials, such as recurrence relations, sum formulas, and symmetric properties have been studied in the literature with the help of generating functions and their functional equations. In this paper, using the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Fibonacci polynomials, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Lucas polynomials, and Changhee numbers, we define the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Fibonacci–Changhee polynomials and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Lucas–Changhee polynomials, respectively. We obtain some important identities and relations of these newly established polynomials by using their generating functions and functional equations. Then, we generalize the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Fibonacci–Changhee polynomials and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Lucas–Changhee polynomials called generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Fibonacci–Lucas–Changhee polynomials. We derive a determinantal representation for the generalized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Fibonacci–Lucas–Changhee polynomials in terms of the special Hessenberg determinant. Finally, we give a new recurrent relation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Fibonacci–Lucas–Changhee polynomials.https://www.mdpi.com/2073-8994/15/4/851(<i>p</i>,<i>q</i>)–Fibonacci polynomials(<i>p</i>,<i>q</i>)–Lucas polynomialsChanghee numbersgenerating functionHessenberg determinant
spellingShingle Chuanjun Zhang
Waseem Ahmad Khan
Can Kızılateş
On (<i>p</i>,<i>q</i>)–Fibonacci and (<i>p</i>,<i>q</i>)–Lucas Polynomials Associated with Changhee Numbers and Their Properties
Symmetry
(<i>p</i>,<i>q</i>)–Fibonacci polynomials
(<i>p</i>,<i>q</i>)–Lucas polynomials
Changhee numbers
generating function
Hessenberg determinant
title On (<i>p</i>,<i>q</i>)–Fibonacci and (<i>p</i>,<i>q</i>)–Lucas Polynomials Associated with Changhee Numbers and Their Properties
title_full On (<i>p</i>,<i>q</i>)–Fibonacci and (<i>p</i>,<i>q</i>)–Lucas Polynomials Associated with Changhee Numbers and Their Properties
title_fullStr On (<i>p</i>,<i>q</i>)–Fibonacci and (<i>p</i>,<i>q</i>)–Lucas Polynomials Associated with Changhee Numbers and Their Properties
title_full_unstemmed On (<i>p</i>,<i>q</i>)–Fibonacci and (<i>p</i>,<i>q</i>)–Lucas Polynomials Associated with Changhee Numbers and Their Properties
title_short On (<i>p</i>,<i>q</i>)–Fibonacci and (<i>p</i>,<i>q</i>)–Lucas Polynomials Associated with Changhee Numbers and Their Properties
title_sort on i p i i q i fibonacci and i p i i q i lucas polynomials associated with changhee numbers and their properties
topic (<i>p</i>,<i>q</i>)–Fibonacci polynomials
(<i>p</i>,<i>q</i>)–Lucas polynomials
Changhee numbers
generating function
Hessenberg determinant
url https://www.mdpi.com/2073-8994/15/4/851
work_keys_str_mv AT chuanjunzhang onipiiqifibonacciandipiiqilucaspolynomialsassociatedwithchangheenumbersandtheirproperties
AT waseemahmadkhan onipiiqifibonacciandipiiqilucaspolynomialsassociatedwithchangheenumbersandtheirproperties
AT cankızılates onipiiqifibonacciandipiiqilucaspolynomialsassociatedwithchangheenumbersandtheirproperties