2-Complex Symmetric Composition Operators on <i>H</i><sup>2</sup>

In this paper, we study 2-complex symmetric composition operators with the conjugation <i>J</i>, defined by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>J</mi><mi>f<...

Full description

Bibliographic Details
Main Authors: Lian Hu, Songxiao Li, Rong Yang
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/8/358
_version_ 1797411155148275712
author Lian Hu
Songxiao Li
Rong Yang
author_facet Lian Hu
Songxiao Li
Rong Yang
author_sort Lian Hu
collection DOAJ
description In this paper, we study 2-complex symmetric composition operators with the conjugation <i>J</i>, defined by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>J</mi><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mover><mrow><mo>(</mo><mi>f</mi><mrow><mo>(</mo><mover accent="true"><mi>z</mi><mo stretchy="false">¯</mo></mover><mo>)</mo></mrow><mo>)</mo></mrow><mo stretchy="false">¯</mo></mover></mrow></semantics></math></inline-formula>, on the Hardy space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mn>2</mn></msup></semantics></math></inline-formula>. More precisely, we obtain the necessary and sufficient condition for the composition operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>ϕ</mi></msub></semantics></math></inline-formula> to be 2-complex symmetric with <i>J</i> when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> is an automorphism of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">D</mi></semantics></math></inline-formula>. We also characterize 2-complex symmetric with <i>J</i> when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> is a linear fractional self-map of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">D</mi></semantics></math></inline-formula>.
first_indexed 2024-03-09T04:41:54Z
format Article
id doaj.art-65adc41569174368b14dec9bef8d3b64
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-09T04:41:54Z
publishDate 2022-07-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-65adc41569174368b14dec9bef8d3b642023-12-03T13:19:53ZengMDPI AGAxioms2075-16802022-07-0111835810.3390/axioms110803582-Complex Symmetric Composition Operators on <i>H</i><sup>2</sup>Lian Hu0Songxiao Li1Rong Yang2Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, ChinaInstitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, ChinaInstitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, ChinaIn this paper, we study 2-complex symmetric composition operators with the conjugation <i>J</i>, defined by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>J</mi><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mover><mrow><mo>(</mo><mi>f</mi><mrow><mo>(</mo><mover accent="true"><mi>z</mi><mo stretchy="false">¯</mo></mover><mo>)</mo></mrow><mo>)</mo></mrow><mo stretchy="false">¯</mo></mover></mrow></semantics></math></inline-formula>, on the Hardy space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>H</mi><mn>2</mn></msup></semantics></math></inline-formula>. More precisely, we obtain the necessary and sufficient condition for the composition operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mi>ϕ</mi></msub></semantics></math></inline-formula> to be 2-complex symmetric with <i>J</i> when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> is an automorphism of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">D</mi></semantics></math></inline-formula>. We also characterize 2-complex symmetric with <i>J</i> when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> is a linear fractional self-map of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">D</mi></semantics></math></inline-formula>.https://www.mdpi.com/2075-1680/11/8/358composition operatorm-complex symmetricnormal
spellingShingle Lian Hu
Songxiao Li
Rong Yang
2-Complex Symmetric Composition Operators on <i>H</i><sup>2</sup>
Axioms
composition operator
m-complex symmetric
normal
title 2-Complex Symmetric Composition Operators on <i>H</i><sup>2</sup>
title_full 2-Complex Symmetric Composition Operators on <i>H</i><sup>2</sup>
title_fullStr 2-Complex Symmetric Composition Operators on <i>H</i><sup>2</sup>
title_full_unstemmed 2-Complex Symmetric Composition Operators on <i>H</i><sup>2</sup>
title_short 2-Complex Symmetric Composition Operators on <i>H</i><sup>2</sup>
title_sort 2 complex symmetric composition operators on i h i sup 2 sup
topic composition operator
m-complex symmetric
normal
url https://www.mdpi.com/2075-1680/11/8/358
work_keys_str_mv AT lianhu 2complexsymmetriccompositionoperatorsonihisup2sup
AT songxiaoli 2complexsymmetriccompositionoperatorsonihisup2sup
AT rongyang 2complexsymmetriccompositionoperatorsonihisup2sup