Summary: | Summary: An analytical approach combining the statistical distributions of the sleep-wake bouts and the Markov transition matrix is used to explain the under-examined association between the microarchitecture of the sleep-wake cycle and susceptibility to chronic social stress in C57BL/6J mice. We separated the sleep-wake transitions into distinct sleep-wake sequences, NREM↔Wake and NREM→REM→Wake, which are controlled by independent neural circuits. Our findings imply greater pull toward the wake leading to early termination and fragmentation of the sleep bouts in the light in both sleep-wake sequences pre- and post-stress. Moreover, the stability of NREM in the NREM↔Wake transition was lower, and the probability of transitioning to wake was higher in susceptible relative to resilient or stress-naïve mice pre- and post-stress. Our findings help elucidate the mechanistic interplay between sleep and mood by suggesting the potential neural underpinnings of sleep disturbances responsible the aberrant transitions of sleep-wake bouts exhibited by the stress-susceptible phenotype.
|