A Wavelet-Based Computational Framework for a Block-Structured Markov Chain with a Continuous Phase Variable

We consider the computing issues of the steady probabilities for block-structured discrete-time Markov chains that are of upper-Hessenberg or lower-Hessenberg transition kernels with a continuous phase set. An effective computational framework is proposed based on the wavelet transform, which extend...

Full description

Bibliographic Details
Main Authors: Shuxia Jiang, Nian Liu, Yuanyuan Liu
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/7/1587
Description
Summary:We consider the computing issues of the steady probabilities for block-structured discrete-time Markov chains that are of upper-Hessenberg or lower-Hessenberg transition kernels with a continuous phase set. An effective computational framework is proposed based on the wavelet transform, which extends and modifies the arguments in the literature for quasi-birth-death (QBD) processes. A numerical procedure is developed for computing the steady probabilities based on the fast discrete wavelet transform, and several examples are presented to illustrate its effectiveness.
ISSN:2227-7390