Analysis of non-axenic biomasses for self-healing concrete

As an alternative to the usage of axenic bacteria to achieve microbially induced calcium carbonate precipitation (MICP), this study evaluates the usage of two non-axenic biomasses as self-healing agents. A fungi-based consortium (Yeast) and heterotrophic nitrifiers (HTN) were harvested from the incu...

Full description

Bibliographic Details
Main Authors: Tezer Mustafa Mert, De Belie Nele, Boon Nico, Verstraete Willy
Format: Article
Language:English
Published: EDP Sciences 2023-01-01
Series:MATEC Web of Conferences
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2023/05/matecconf_smartincs2023_02007.pdf
Description
Summary:As an alternative to the usage of axenic bacteria to achieve microbially induced calcium carbonate precipitation (MICP), this study evaluates the usage of two non-axenic biomasses as self-healing agents. A fungi-based consortium (Yeast) and heterotrophic nitrifiers (HTN) were harvested from the incubation of agricultural side streams. The characteristics of the two biomasses were identified through flow cytometry, total suspended solids and volatile suspended solids tests. The incorporation of the biomasses into concrete was evaluated in terms of compressive strength, flow and healing ability. Self-healing ability was analyzed through microscope imaging on prismatic (60x60x220 mm) samples. Cracks were induced with a three-point bending test where the widths were controlled with an LVDT sensor. A curing period of 56 days was applied to the samples and visual inspection was conducted at the start and end of the healing period with an optical microscope. Results compare and discuss the differing effects of active and autoclaved biomasses on the concrete properties and crack closure.
ISSN:2261-236X