Nontrivial solutions for a class of semipositone superlinear beam equations with Neumann boundary condition(一类带Neumann边界条件的半正超线性梁方程非平凡解的存在性)
在线性算子相应主特征值条件下,运用拓扑度方法和不动点理论,获得了带Neumann边界条件的半正超线性四阶方程y(4)(x)+(k1+k2)y″(x)+k1k2y(x)=λf(x,y(x)),0≤x≤1,y'(0)=y'(1)=y‴(0)=y‴(1)=0 非平凡解与正解的存在性,其中k1,k2为常数,参数λ>0,f: [0, 1]×R→R连续。...
Main Author: | 马琼(MA Qiong) |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2023-07-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Online Access: | https://doi.org/10.3785/j.issn.1008-9497.2023.04.004 |
Similar Items
-
用线性光纤器件验证光的半波损失
by: 孙世菊, et al.
Published: (2020-01-01) -
Existence of positive solutions for boundary value problems of second-order systems with nonlinear boundary conditions(带非线性边界条件的二阶奇异微分系统正解的存在性)
by: MAMantang(马满堂), et al.
Published: (2019-11-01) -
考虑结合部耦合的结构梁的边界元解析方法研究
by: 李艳, et al.
Published: (2015-01-01) -
Existence of mild solutions to semilinear neutral evolution equations(半线性中立型发展方程mild解的存在性)
by: SONGChao(宋超), et al.
Published: (2010-01-01) -
Linear sums and its convergence properties of Neumann-Bessel series(Neumann-Bessel级数的线性求和及其收敛性)
by: GEJin-hui(葛金辉), et al.
Published: (2005-03-01)